

Raymond M. Reilly, Ph.D. Professor and Director, Centre for Pharnaceutical Oncology Email: <u>raymond.reilly@utoronto.ca</u>

Theranostics for Cancer Imaging and Therapy

Disclosures

- I have no conflicts-of-interest to declare.
- I am collaborating with scientists at TRIUMF on development of novel theranostic agents for imaging and treatment of cancer, especially using novel Auger electron-emitting radionuclides.

RIUMF

Hua Yang

Valerie Radchenko Caterina Ramogida

Theranostics Concept

- Theranostics (sometimes termed "theragnostics") combine a therapeutic agent with a diagnostic imaging agent for cancer.
- Radiopharmaceuticals offer the opportunity to construct a theranostic using the <u>same molecule</u> labeled with a radionuclide for treatment and another radionuclide for diagnostic imaging.
- In some cases, the <u>same radionuclide</u> may be used by administering a low dose for imaging and a high dose for treatment of cancer.

Prostate-Specific Membrane Antigen (PSMA) Theranostics

Imaging and Treatment of Prostate Cancer

- Imaging of metastases and evaluation of treatment response by PET using ⁶⁸Ga-PSMA-11
- Treatment of metastatic prostate cancer with ¹⁷⁷Lu-PSMA-617 (6,000 MBq/dose)

Very successful theranostic example!

Kratochwil C. et al. J Nucl Med 2016; 57: 1170-1176

Growth in Interest in Theranostics

Novartis Pluvicto[™] approved by FDA as first targeted radioligand therapy for treatment of progressive, PSMA positive metastatic castration-resistant prostate cancer

Mar 23, 2022

Global radiopharmaceutical market is expected to grow to **>\$11 billion** from 2019-2023. High fraction of this market is for cancer imaging and treatment.

Two Theranostic Examples from My Team's Research

Head and Neck Cancer (HNSCC)

- 7,500 cases and 2,100 deaths per year in Canada. Long-term outcome is variable.
- EGFR overexpression is present on 38-47% of tumours and is targeted by cetuximab therapy but is a poor prognostic marker
- Recurrence and metastatic progression are major challenges after treatment by surgery, radiation, anti-EGFR cetuximab and chemotherapy.

Hypotheses

- HNSCC tumours in mice could be imaged by PET/CT using ⁶⁴Cu-labeled anti-EGFR panitumumab F(ab')₂ fragments
- PET could be extended to radioimmunotherapy (RIT) in a theranostic approach using ¹⁷⁷Lu-panitumumab F(ab')₂
- PET with ⁶⁴Cu-panitumumab F(ab')₂ would predict the radiation absorbed doses to the tumour and normal organs from RIT with ¹⁷⁷Lu-panitumumab F(ab')₂

⁶⁴Cu/¹⁷⁷Lu-DOTA-Panitumumab F(ab')₂

 $K_d = 2.9 \pm 0.7 \times 10^{-9} M$

high tumour uptake and rapid elimination from the blood for PET with 64 Cu (t_{1/2} = 12.7 h)

PET/CT Imaging with ⁶⁴Cu-DOTA-Panitumumab F(ab')₂

NRG mice with s.c. patient-derived HNSCC xenografts imaged at selected times posti.v. injection of ⁶⁴Cu-panitumumab F(ab')₂ fragments. Normal liver uptake.

Ku, A et al. EJNMMI Radiopharmacy and Chemistry 2021 Aug 12;6(1):25.

SPECT/CT Imaging with ¹⁷⁷Lu-DOTA-Panitumumab F(ab')₂

NRG mice with s.c. patient-derived HNSCC xenografts imaged at selected times post-i.v. injection of ¹⁷⁷Lupanitumumab F(ab')₂ fragments.

¹⁷⁷Lu-DOTA-panitumumab F(ab')₂

¹⁷⁷Lu-DOTA-trastuzumab F(ab')₂

Anti-HER2

Comparison of Biodistribution

No significant differences at 24 h post-injection but small differences were found at 6 or 48 h in intestine, liver, blood, muscle, but not in the tumour

%ID/g

⁶⁴Cu-DOTA-Panitumumab F(ab')₂ ¹⁷⁷Lu-DOTA-Panitumumab F(ab')₂ 20.0 17.5-24 h p.i. 15.0-12.5-10.0-7.5-5.0-2.5 Lungionach intestine spleen Liver uney Skin Blood Bone rumour NUSCIE ancreas

PET with ⁶⁴Cu Predicts the Dosimetry of ¹⁷⁷Lu

MIRD Equation:

$D = \tilde{A}_s \times$	$S \times W_R$
1	
⁶⁴ Cu	¹⁷⁷ Lu
	\backslash
	Surrogate for ¹⁷⁷ Lu

Organ	Radiation Equivalent Dose (Gy/MBq)				
	Predicted Based on ⁶⁴ Cu	Estimated Based on ¹⁷⁷ Lu			
Heart	0.35 ± 0.06	0.32 + 0.13			
Lungs	0.51 ± 0.05	0.38 ± 0.04			
Liver	1.22 ± 0.13	1.82 ± 0.14			
Spleen	0.71 ± 0.20	0.66 ± 0.18			
Pancreas	0.26 ± 0.08	0.16 ± 0.04			
Stomach	0.33 ± 0.03	0.27 ± 0.04			
Intestines	0.31 ± 0.05	0.21 ± 0.05			
Kidneys	0.63 ± 0.09	0.75 ± 0.08			
Tumour	2.00 ± 0.60	2.50 ± 0.80			
Whole Body	0.26 ± 0.02	0.34 ± 0.02			

Toxicity of ¹⁷⁷Lu-DOTA-Panitumumab F(ab')₂

Injected dose = $6 \text{ MBq} (50 \mu g)$

Deliver a tumour absorbed dose of 12-15 Gy based on 2.0-2.5 Gy/MBq

Parameter	Normal Saline	¹⁷⁷ Lu-DOTA- Panitumumab F(ab') ₂		
WBC (x 10 ⁹ /L)	1.4 ± 0.4	1.0 ± 0.3		
RBC (x 10 ¹² /L)	9.0 ± 0.2	8.7 ± 0.2		
PLT (x 10 ⁹ /L)	527.3 ± 66.9	413.0 ± 15.3		
Hb (g/L)	14.5 ± 0.6	13.4 ± 0.3		
Hct (%)	39.9 ± 0.8	39.4 ± 0.7		
ALT (U/L)	41.0 ± 13.1	31.5 ± 9.3		
Cr (µmole/L)	18.0 ± 0.0	21.0 ± 2.1		
No significant differences				

RIT of HNSCC Tumours with ¹⁷⁷Lu-DOTA-Panitumumab F(ab')₂

Tumour Growth Index

Body Weight Index

Conclusions and Implications

- HNSCC was imaged by PET with ⁶⁴Cu-DOTA-Panitumumab F(ab')₂. PET predicted the radiation absorbed doses from RIT with ¹⁷⁷Lupanitumumab F(ab')₂
- ¹⁷⁷Lu-DOTA-panitumumab F(ab')₂ was safe and effective for RIT of HNSCC tumours in NRG mice.
- A theranostic approach combining ⁶⁴Cu- and ¹⁷⁷Lu-DOTA-panitumumab F(ab')₂ is promising for imaging and treatment of HNSCC

Triple-Negative Breast Cancer (TNBC)

- 28,900 cases and 5,500 deaths from breast cancer each year in Canada. TNBC accounts for 10-15% of cases but has a higher risk for progression and poor outcome.
- TNBC is defined as breast cancer that does not express estrogen or progesterone receptors or HER2.
- EGFR overexpression is present on 50-90% of tumours and is a poor prognostic marker but a good target.

Hamy A-S, et al. (2020) PLoS ONE 15(6): e0234191.

Hypotheses

- TNBC tumours in NRG mice could be imaged by SPECT/CT using ¹¹¹In-panitumumab intact IgG.
- SPECT/CT could be extended to RIT in a theranostic approach by exploiting the Auger electron (AE) emissions of ¹¹¹In.
- RIT with ¹¹¹In-panitumumab IgG would be safe and effective for treatment of primary and metastatic TNBC tumours in NRG mice.

TNBC Tumour Xenograft Models

Inoculate LM2-4/Luc Cells into the MFP of NRG mice

Surgical Excision

Local XRT

21 days

BLI

SPECT/CT Imaging with ¹¹¹In-DOTA-Panitumumab IgG (48 h post-injection)

Transaxial Lungs

Liver

Transaxial

Primary Tumour

Metastases

BLI

Toxicity of ¹¹¹In-DOTA-Panitumumab IgG

Injected dose = 24 MBq (15 μ g)

Selected in a dose-escalation study.

Parameter	Normal Saline	¹¹¹ In-DOTA- Panitumumab IgG		
WBC (x 10 ⁹ /L)	0.9 ± 0.2	0.5 ± 0.1		
RBC (x 10 ¹² /L)	9.4 ± 0.2	8.5 ± 0.2		
PLT (x 10 ⁹ /L)	497.5 ± 46.2	254.0 ± 62.6 *		
Hb (g/L)	14.2 ± 0.3	13.0 ± 0.3		
Hct (%)	41.2 ± 0.9	38.3 ± 1.1		
ALT (U/L)	40.9 ± 7.6	47.3 ± 11.8		
BUN (μmole/L)	7.9± 0.4	8.5 ± 0.4		
* Significant difference				

RIT of Primary TNBC Tumours in the MFP with ¹¹¹In-DOTA-Panitumumab IgG

Facca, V et al. Mol. Pharm. 2022 (in revision).

RIT of Metastatic TNBC Tumours with ¹¹¹In-DOTA-Panitumumab lgG

- ···· Saline
- 24 MBq Panitumumab-DOTA-¹¹¹In
- XRT + Saline
- XRT + 2x10 MBq PmAb-DOTA-¹¹¹In
- XRT + PmAb-DOTA
- XRT + 24 MBq IgG_2 -DOTA-¹¹¹In

RIT improves survival in mice with metastatic TNBC, when combined with other treatments including surgery and local radiation of the primary tumour

Conclusions and Implications

- EGFR-positive primary and metastatic TNBC tumours in NRG mice were imaged with ¹¹¹In-DOTA-Panitumumab IgG
- RIT with ¹¹¹In-DOTA-Panitumumab exploiting the AE emissions delayed tumour growth and improved survival of mice with primary or metastatic TNBC tumours
- A theranostic approach with ¹¹¹In-DOTA-Panitumumab IgG is promising for imaging and RIT of TNBC and may improve patient outcomes

Alternative Auger Electron-Emitters

Radionuclide	T1/2 (days)	AEs/decay	Total Energy (keV)	Other Emissions/AEs	Production
¹⁹⁷ Hg	2.7	~30	13.4	10:1	¹⁹⁷ Au(p,n) ¹⁹⁷ Hg
¹¹⁹ Sb	1.6	24	26.0	0.9:1	¹¹⁹ Sn(p,n) ¹¹⁹ Sb
¹¹¹ ln	2.8	14.5	7.0	62:1	¹¹¹ Cd(p,n) ¹¹¹ In

Novel chelators are needed to complex ¹⁹⁷Hg to panitumumab (collaboration with Dr. Caterina Ramogida, SFU)

Thank you for the invitation to speak at the TRIUMF Science Week!

Acknowledgments

