Spectroscopy of the highly forbidden 7s-8s transition in francium:Towards a measurement of atomic parity violation

Photo by PhD student Tim Hucko

Gerald Gwinner University of Manitoba

Goals

- Long-term
 - Atomic parity non-conservation (APV) measurements using the 7s-8s optical transition in laser-trapped francium
 - nuclear spin independent (Standard Model physics)
 - nuclear spin dependent (nuclear anapole moment)
- Short-term
 - spectroscopic investigations of 7s 8s on critical path to APV
 - Stark-induced amplitudes (started Sept 2018, now precision)
 - relativistic and hyperfine-induced M1 amplitudes (started in Sept 2021)
 - El_{stark} MI interference
- Timeline: first observation of APV effect by end of 2024

Atomic Parity Violation

Z-boson exchange between atomic electrons and the quarks in the nucleus

NSI: coherent over all nucleons (quarks):

 $H_{\rm pv}$ mixes electronic s & p states: $\langle n's | H_{\rm pv} | np \rangle \propto Z^2 N \approx Z^3$ signature: drive $s \to s$ electric dipole (E1) transition atomic theory to extract weak physics \to heavy alkalis

≈ 18x larger in Fr than in Cs(incl. relativistic enhancement)

1974, 1975

Bouchiat & Bouchiat

Atomic Parity Violation

- APV is a uniquely low-energy probe
 - sensitive to light dark boson scenarios

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19%	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

Physics sensitivity from contact interaction (LEP2 convention $g^2 = 4\pi$) Frank Maas, CIPANP 2018 talk

Stark interference APV measurement

- faint transitions
- oscillator strengths

- observe interference between the Stark-induced and PV amplitudes ($f_{eff} \approx 10^{-16.5}$)
- IF term changes sign under parity transformations (e.g. electric field reversals)
 - modulation of decay fluorescence (in Fr $\approx 10^{-4}$) \rightarrow extract weak charge of Fr
- M1 always present \rightarrow study and understand M1 and E1_{stark} in detail

A facility for experiments with francium

- Fr has not stable isotopes \rightarrow radioactive beam facility
- Boulder Cs used a massive atomic beam: 1013 s-1 cm-2
- no existing RIB facility can do this, not even close
- key figure: Cs had 1010 "APV excitations" per second
- would need ≈ 10⁶ 10⁷ Fr atoms stored in a neutral atom trap to yield similar signal → can do this at TRIUMF/ISAC

Vancouver

Pacific Spirit Forest

TRIUMF

The Francium Trapping Facility at TRIUMF/ISAC part 1: online capture trap

Part 2: Science chamber

7s-8s spectroscopy: Apparatus

- $E_{\rm stark}$: transparent electric field plates compatible with MOT
- *M*1: impossible with a power buildup cavity, very challenging
 - inside UHV chamber on ISAC beamline, not optics table
 - achieved **4000×** enhancement
 - higher intensities lead to photo-ionization of Fr
 - MOT beams and PBC @ 506 nm cannot be on at the same time → photo-ionization
 - interleave MOT and PBC every 3-5 ms
 - miraculously (to us) PBC able to maintain lock!
 - → 10s of kW/cm² of 506 nm light available for spectroscopy

7s

7s-8s spectroscopy: Results

• only had time for $\Delta F = -1$ transition

7s-8s spectroscopy: Results (again)

• Investigations of resonance strength as a function of applied electric field

all with ²¹¹Fr and around 10⁵ trapped atoms

- at higher fields, we have too much light → hyperfine pumping → saturation
- observed saturation and broadening consistent

7s-8s spectroscopy: Results (and again)

• Investigations of resonance strength as a function of applied electric field

values for $M_{\rm rel}$ and β

not enough signal!

 $|M/\beta| = 143 \pm 11 \text{ V/cm}$ $|M_{rel}| = 130 \pm 10 \times 10^{-5} \mu_B$

7s-8s: Boosting the signal

- so far: detect decay fluorescence at 817 nm $(7p_{1/2} \rightarrow 7s)$
 - pro: background free (MOT is at 718 nm on 7s \rightarrow 7p_{3/2})
 - con: efficiency \approx 1/4000 (PMT 10% QE, lens solid angle, filters, ...)
- Our planned answer: "burst detection"

- June 2022: validated this method with Rb MOT in our apparatus
 - MOT seems not (or minimally) affected by driving the cycling transition for \approx 400 μs with a counter-propagating probe beam while MOT off
 - can enhance signal by another factor $\approx 2000 \times$ in Fr \rightarrow million-fold since 2018!

And then?

- PBC and burst detection \rightarrow optimal signal rate per atom
- to measure APV \rightarrow will need to up the MOT to probably $\gtrsim 5 \times 10^6$ atoms
- Stark-PV IF requires specific $|F, m_F\rangle$ states
 - atoms in magneto-optical trap largely (but not entirely) unpolarized
 - need to **optically pump** the atoms in $m_F = \pm F$ stretched states
 - new level of magnetic field control
 - ≈ 10 msec cycle: trap optically pump excite 7s-8s burst detect re-trap
 - switch quadrupole MOT coils and homogenous holding fields on and off **sub-msec**

- use 200 kHz bandwidth bipolar power supplies (Matsusada)
- active coil current shaping to counter location-dependent eddy fields

The FrPNC team

- A. Gorelov, A. Teigelhöfer, J. Behr TRIUMF
- T. Hucko, A. Sharma, G. Gwinner U Manitoba
- L. Orozco U Maryland
- E. Gomez San Luis Potosi
- S. Aubin William & Mary

Funding: NSERC, NRC/TRIUMF, U Manitoba, U Maryland

Joining in 2022:

J. Lassen and S. Malbrunot-Ettenauer (TRIUMF) new PD, new grad student

Alumni:

M. Kossin (MSc, 2016-21, U Manitoba)

M. Kalita (PD 2016-21, TRIUMF)

M. Pearson (2011-21, TRIUMF)

DeHart (MSc 2018, U Manitoba)

- J. Zhang (PhD 2015, U Maryland)
- R. Collister (Phd 2015, U Manitoba)

M. Tandecki (PD 2011-14, TRIUMF)

