

Photo-detector development for nEXO, DarkSide and beyond

G. Gallina

Overview

Signals of new Physics

Galactic clusters

Thermal anisotropies

Galaxy velocities

Neutrino Physics: $0\nu\beta\beta$ decay

Direct Dark Matter Search

Search with liquified noble elements

- High density
 Self screening
 Good scalability
- Easy(-ish) purification, also
 online
- Scintillation: good light yield
- Ionisation
- ER rejection

Excellent detection medium!

and even source!

		LAr	LKr	LXe
	Atomic number	18	36	54
Physical	Boiling point at 1 bar, T _b (K)	87.3	119.8	165.0
properties	Density at T _b (g/cm ³)	1.40	2.41	2.94
	W (eV) ¹	23.6	20.5	15.6
	Fano factor	0.11	~0.06	0.041
Ionisation	Drift velocity (cm/\mu s) at 3 kV/cm	0.30	0.33	0.26
	Transversal diffusion coefficient			
	at 1 kV/cm (cm ² /s)	~20		~80
	Decay time ² , fast (ns)	5	2.1	2.2
	slow (ns)	1000	80	27/45
Scintillation	Emission peak (nm)	127	150	175
	Light yield ² (phot./Mev)	40000	25000	42000
	Radiation length (cm)	14	4.7	2.8
	Moliere radius (cm)	10.0	6.6	5.7
		•		

Excellent discrimination power!

The nEXO and the Darkside-20k experiment

• >20 m² covered with NUV-sensitive SiPMs

• >4.5 m² covered with VUV-sensitive SiPMs

SiPMs technology

Main Characteristics:

SPADs connected in parallel operated in reverse bias mode

Voltage [mV]

100

- Incoming photon triggers charge avalanche
- Single pixel is discharged

Advantages:

- High gain at low bias voltage
- Single photon detection resolution
- High radio purity possible
- Suitable at cryogenic temperature
- High Photon Detection Efficiency (PDE)

400

Pulse Time [ns]

500

300

200

nEXO PhotoDetector Development

FBK SiPM

nEXO SiPMs candidates

Hamamatsu MPPCs

HPK VUV4-Q-50 Quad devices. 50 um pitch

FBK VUVHD3 substitutes its previous generation **FBK VUVHD1**

• PDE has been measured by TRIUMF and IHEP at 163 K and 233 K, respectively as a function of over voltage and wavelength

Requirement > 15% at ~ 175 nm

nEXO Energy Resolution

$$\frac{\sigma_n}{\langle n \rangle} = \frac{\sqrt{\left(\frac{(1-\epsilon_p)n_p}{\epsilon_p} + \frac{\epsilon_p n_p \sigma_{\Lambda}^2}{(\epsilon_p (1+\langle \Lambda \rangle))^2} + n_p^2 \sigma_{lm}^2\right) + \left(\frac{n_q t}{\tau} + \frac{\sigma_{q,noise}^2}{\epsilon_q^2}\right)}}{\langle n \rangle}$$

nEXO Requirement: $\frac{\sigma_n}{\langle n \rangle} \le 1 \%$

 $\frac{\sigma_n}{1} \leq 1\%$

Fluctuation due to number of photons detected (PDE)

Fluctuation Due to
Correlate Avalanche Noise
(CA/RMS)

Fluctuation Due to Light Map Error

Fluctuation due to the number of charges detected

Fluctuation due to electronics in charge channel

DarkSide-20k Photo Detector Development

The Darkside Photo-detection system

TPC optical plane Photo-Detection Unit Tile

16 tiles arranged in 4 readout channels

TPC planes area: ~21m²

Organised in 525 PDUs

100% coverage of TPC top and bottom

SiPM bias distribution cryogenic pre-amplifiers bias

Signal transmission

Channels switch-on/off

Photosensor

Array of 24 SiPMs

Signal pre-amplification

FBK NUV-HD Low SiPMs

- NUV vs RGB choice (P₀₁)
- Cell pitch and fill factor (FF) optimization
- **E** field profile ⇒ DCR+CN reduction

PDE ~50% in LAr

Thanks!

Contacts:

gallina@princeton.edu
Physics Department, 373 Jadwin Hall
(609) 933-8160