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The ATLAS detector
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Calorimeters

✴ Each read-out unit of 

the calorimeter defines 
a cell 


✴ Contain energy/
location information


✴ Each shower deposits 
energy in many cells 

✴ Multi-purpose detector

✴ Optimised for proton-proton 

interactions

✴ Onion-shell-like structure and 

covers almost the full 4π solid 
angle

Tracker Hadronic Calorimeter

Electromagnetic CalorimeterMuon Chambers

Hadronic endcap built by 
TRIUMF 



3

Hadronic reconstruction in ATLAS

ArXiv:2003.08863

Topo-clusters 

Baseline hadronic reconstruction in ATLAS

Uses clusters of calorimeter cells


3D clusters of noise-suppressed 
calorimeter cells

π0

π±

Hadronic showers are mostly composed of pions


Neutral Pions :

Quickly decay to photons

Compact showers  

Captured by the electromagnetic calorimeter


Charged Pions : 

Irregular showers

Require the dense material in the hadronic calorimeter 
to be stopped


π0

π±

arXiv:1603.02934 

https://arxiv.org/pdf/2003.08863.pdf
http://arxiv.org/abs/arXiv:1603.02934
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Hadronic calibration in ATLAS

1. Classify as electromagnetic or hadronic calculating the EM probability 
PEM
clus

arXiv:1603.02934 

PEM
clus

 Topo-cluster calibration:

Topo-clusters needs to be calibrated:

Different detector response and measurement for  vs.  showersπ0 π±

Local Cell Weighting (LCW)

http://arxiv.org/abs/arXiv:1603.02934


5

Hadronic calibration in ATLAS

1. Classify as electromagnetic or hadronic calculating the EM probability 

2. Calibrate its energy to account for differences in response.

PEM
clus

arXiv:1603.02934 

PEM
clus

Each cell in the cluster is weighted

 Topo-cluster calibration:

Topoclusters needs to be calibrated:

Different detector response and measurement for  vs.  showersπ0 π±

Local Cell re-Weighting (LCW)

http://arxiv.org/abs/arXiv:1603.02934
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CAN WE USE DEEP LEARNING TO 
IMPROVE THESE TECHNIQUES?
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Topoclusters as images

Represent each cluster as a pixelated image per calorimeter layer using the appropriate 
cell granularity.

Neural Networks trained using single-particle Monte Carlo simulations.

ATL-PHYS-PUB-2020-018

π0

π+

Calorimeter layer 1 Calorimeter layer 2 Calorimeter layer 3

http://cdsweb.cern.ch/record/2724632/
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Topoclusters as images
ATL-PHYS-PUB-2020-018

π0 − π+

Represent each cluster as a pixelated image per calorimeter layer using the appropriate 
cell granularity.

Neural Networks trained using single-particle Monte Carlo simulations.

http://cdsweb.cern.ch/record/2724632/
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Machine Learning techniques all do an excellent job of distinguishing  from  showers


Dramatic improvements compared to the current classification method using 

π0 π±

PEM
clus

improvement

Topocluster images: Pion Classification

PEM
clus
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Topocluster images: Pion Energy Calibration

After classifying a cluster, need to calibrate its energy


Energy  calibration goal: Correctly predict the true energy deposited in the cluster.


Quantified by measuring the cluster energy response:   that should be   R =
Epredicted

Etruth
∼ 1

Before Calibration After calibration

Regression performance for charged pions
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Topoclusters as point clouds

Advantages with respect image-based approach

More natural representation of the 3D structure of 
calorimeter topo-clusters than a series of images

More flexible as an input structure: Allows for the 
incorporation of track information. Doesn’t require 
workarounds for the different layer geometries/granularities.

Graph Neural Network (GNN)

Represent each pion topo-
cluster as a graph


Nodes = individual cluster 
cell features

Edges = cell geometry 
information

Global feature = cluster 
energy

Point-clouds: set of data points in space

Use point clouds representation of clusters:


Each point in the set have features (E, η, ɸ, Calo layer) per cell
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Topoclusters point clouds: Pion classification

New point cloud approaches (GNN & PFN) far outperform the baseline EM cluster probability 
( ) 

They also perform on par with or better than the image-based CNN approach for pion 
classification 

PEM
clus

improvement
improvement
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Topoclusters point clouds: Pion Energy Regression

After calibration: Median of the response  should be ~1R =
Epredicted

Etruth

GNN& PFN are closer to one than the EM scale (raw cluster energy) and outperform LCW 
calibration for low-energy clusters.

1

Energy Response

R

events
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Topoclusters point clouds: Pion Energy Regression

The pion energy resolution of the GNN& PFN models indicate comparable or narrower 
response curves than the EM and LCW.

Energy Resolution

After calibration: Spread of the response  around the 

media value to be as small as possible 

R =
Epredicted

Etruth

R

events
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ML for Hadronic reconstruction: Summary and Outlook 

Deep learning approaches outperform the classification applied in the baseline hadronic 
calibration ( ), and are able to predict the pion energy and improve the energy 
resolution for a wide range in particle momenta

These results demonstrates the potential of deep-learning-based low-level hadronic 
calibrations to significantly improve the quality of particle reconstruction in the ATLAS 
calorimeter!

This is the first step towards a machine learning-based hadronic reconstruction

PEM
clus

Next steps: 

Add tracking information (complementary with calorimeters)

Study environments closer to reality (Multiparticles, pile-up, 
dense environments…jets!)

Looking forward to implement a Particle Flow deep learning algorithm in ATLAS (uses tracks 
and calorimeter deposits that ideally will represent particles)
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BACKUP

Met Significance

UFO

Mono-H

DJR

HH

LFV



TITLE TEXT ATLAS CALORIMETERS
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✴ Full coverage |𝜂|< 4.9

✴ High granularity in Δ𝜂 × Δ𝜑 = 0.025 × 𝜋/128 (central EM) 

✴ Up to seven depth layers (samplings)

LAr EM Calo

Barrel Endcap Forward

|η| < 0.7 
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ATLAS calorimeters with pseudo rapidity 



TITLE TEXT
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 OBJECT RECONSTRUCTION



TITLE TEXTTOPO-CLUSTERS 
Topo-clusters: 3D clusters of noise-suppressed calorimeter cells


Calorimeter jet constituents

Baseline and most common inputs to jet algorithm

Eur. Phys. J. C 77 (2017) 490

To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

 


Define for each cell: significance

Ratio of energy measured to expected average energy due to noise in that cell

Clusters are seeded by cells with large energy over 
noise ratio

✴ |ζ|>4


Clustering algorithm
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Seed cells

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


TITLE TEXTTOPO-CLUSTERS 
Topo-clusters: 3D clusters of noise-suppressed calorimeter cells


Calorimeter jet constituents

Baseline and most common inputs to jet algorithm. 

Eur. Phys. J. C 77 (2017) 490

To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

 


Define for each cell: significance

Ratio of energy measured to expected average energy due to noise in that cell

Clusters are seeded by cells with large energy over 
noise ratio

✴ |ζ|>4


Expanded on neighbouring cells 
✴ All Neighbors with|ζ|>2 are added 


Growth cells

Clustering algorithm
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


TITLE TEXTTOPO-CLUSTERS 
Topo-clusters: 3D clusters of noise-suppressed calorimeter cells


Calorimeter jet constituents

Baseline and most common inputs to jet algorithm. 

Eur. Phys. J. C 77 (2017) 490

To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

 


Define for each cell: significance

Ratio of energy measured to expected average energy due to noise in that cell

Clusters are seeded by cells with large energy over 
noise ratio

✴ |ζ|>4


Expanded on neighbouring cells 
✴ All Neighbors with|ζ|>2 are added 


All neighbouring cells are added regardless of the 
significance 
✴ |ζ|>0


 Final cluster splitting step breaks up large topo-
clusters with multiple local maxima

 Boundary cells

Clustering algorithm
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


TITLE TEXTEM AND LCW SCALES
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Topo-clusters enter jet finding at one of two scales: 


Electromagnetic (EM) scale: same scale as the cells. Used for small-R jets.


Local cell weighted (LCW) scale: Topo-clusters calibrated based on their properties. Used 
for large-R jets.

✴ Topo-clusters are identified as either electromagnetic or hadronic. Weights are then 

assigned to account for

✴ Differences in detector response (EM vs. HAD)

✴ Energy falling in unclustered cells

✴ Energy deposited in inactive (dead) regions of the detector

 

CERN-PH-EP-2011-191



TITLE TEXTTOPO-CLUSTERS 
Eur. Phys. J. C 77 (2017) 490
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2014-07/


TITLE TEXT

25

HADRONIC SHOWER

https://cds.cern.ch/record/1222464/files/0911.2639.pdf 

https://cds.cern.ch/record/692252/files/RevModPhys.75.1243.pdf

https://cds.cern.ch/record/1222464/files/0911.2639.pdf
https://cds.cern.ch/record/692252/files/RevModPhys.75.1243.pdf


TITLE TEXTCOMBINING CLUSTERS AND TRACKS
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Calorimeter and tracker provide complementary information 

Tracker:

✴ Sensitive to charged particles

✴ Better angular resolution

✴ Able to assign tracks to pile-up or hard-

scatter vertex. 

✴ Better reconstruction efficiency and 

momentum resolution at low pT


Calorimeters:

✴ Sensitive to both neutral and charged 

particles.

✴ Better energy resolution at high pT

26
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Topocluster images: Merged Deep Fully Connected Network (DNN)

3 hidden layers

each calorimeter layer is considered 
as a separate input to the model 

All cells are concatenated into a 
single vector of dimension 752 

3 hidden layers

Classification

✴ Images are flatten into one-dimensional vectors. 

Regression
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Topocluster images: Convolutional Neural Network (CNN) 

✴ The entirety of the two-dimensional images are used as inputs to the model. 

✴ The layers of the calorimeter can be thought of as color channels of traditional image 

classification problems 

Classification

3 Convolutional

Layers

Fully connected Layer

Regression
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Topocluster images: Densely Connected Convolutional Networks 
(DenseNets) 

Every layer receives as inputs the 
concatenated feature maps from every 

previous layer 



Topocluster images: CNN classification performance
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✴ classifier performs increasingly better at higher energies

✴ CNN was not explicitly trained with energy as an input, but the shower shape’s dependence 

on energy is sufficient to provide effective separation at all energies. 



Topocluster images: Pion Energy Calibration
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After identifying a cluster as hadronic/EM, need to convert the signal into an energy 
measurement

Energy regression goal: Correctly predict the true energy deposited in the cluster.


Quantified by measuring the cluster energy response:   that should be   R =
E reco

Etruth
∼ 1

Raw “EM” scale 

under-estimates R

 LCW 

over-estimates R at low-energy

DNN regression 

does an excellent job 

nearly everywhere

Regression performance for charged pions



Topocluster images: Pion charged Energy Calibration
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Topocluster images: Neutral Pion Energy Calibration
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Pion Energy Calibration
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π+ π0



Mixed sample of π ± and π0
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First look at the performance with jets

,  and  mixed in a 1:1:1 ratio


Roughly correspond to the expected 
distribution in jets

π+ π− π0



Outlook
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Looking forward studying more complex scenarios:

First look at the performance with jets

,  and  mixed in a 1:1:1 ratio


Roughly correspond to the expected 
distribution in jets

π+ π− π0

Another handy way to represent energy 
deposits is as a point-cloud


Points contains cell info & cluster-level info.

Allows for combining signals from the inner 
detector (tracks) and from calorimeter 
(clusters)
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Topoclusters point clouds: Graph Neural Network (GNN) 

The classification & regression losses are balanced together in the same model using a loss 
function that accommodates both tasks 



Deep Sets
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Deep Sets are designed for permutation-invariant & variable-length data

One can treat Topo-clusters as simple unordered “set”

“Deep Sets” paradigm: 

Adapts the Deep Sets framework for particle 
physics data

Each set point have features per cell

PFN : O =
M

∑
i=1

Φ(E, ηi, ϕi, SamplerID)

Particle Flow Network (PFN)



Particle Flow Network implementation
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Approximate  and  with Neural NetworksΦ F

Per-particle  dense 
networks

Φ

Direct sum 

(permutation-invariant)

Direct sum is passed 
through a final NN 

representing the global F
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Topoclusters point clouds: Pion classification

New point cloud approaches (GNN & PFN) far outperform the baseline EM cluster probability 
( ) 

They also perform on par with or better than the image-based CNN approach for pion 
classification 

PEM
clus

improvement



Pion classification with Particle Flow Network (PFN)
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