

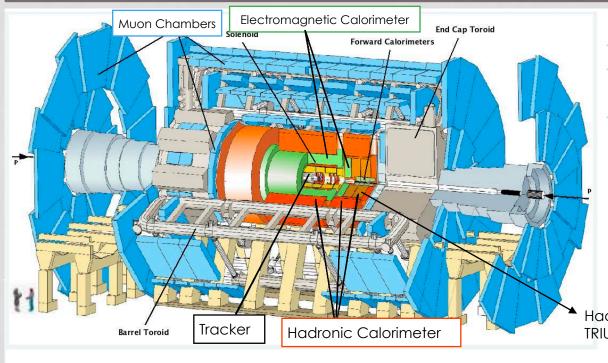
DEEP LEARNING METHODS FOR HADRONIC RECONSTRUCTION WITH THE ATLAS DETECTOR

DILIA MARÍA PORTILLO,

ALISON LISTER, MAX SWIATLOWSKI, WOJTEK FEDORKO, RUSSELL BATE

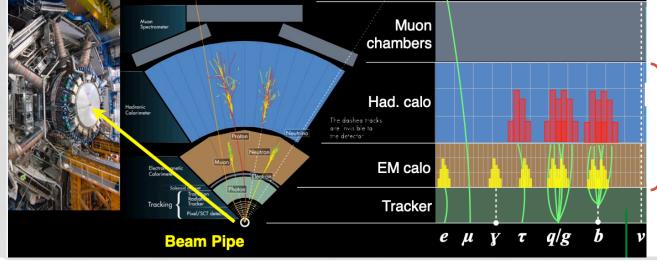
18-07-2022
TRIUMF SCIENCE WEEK 2022

The ATLAS detector



- * Multi-purpose detector
- * Optimised for proton-proton interactions
- * Onion-shell-like structure and covers almost the full 4π solid angle

Hadronic endcap built by TRIUMF



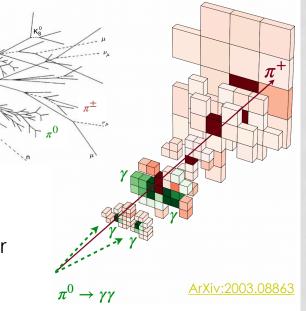
Calorimeters

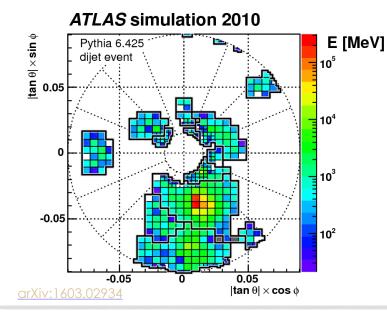
- * Each read-out unit of the calorimeter defines a cell
- * Contain energy/
 location information
- * Each shower deposits energy in many cells

Hadronic reconstruction in ATLAS

Hadronic showers are mostly composed of pions

- Neutral Pions π^0 :
 - Quickly decay to photons
 - Compact showers
 - Captured by the electromagnetic calorimeter
- Charged Pions π^{\pm} :
 - Irregular showers
 - Require the dense material in the hadronic calorimeter to be stopped





Topo-clusters

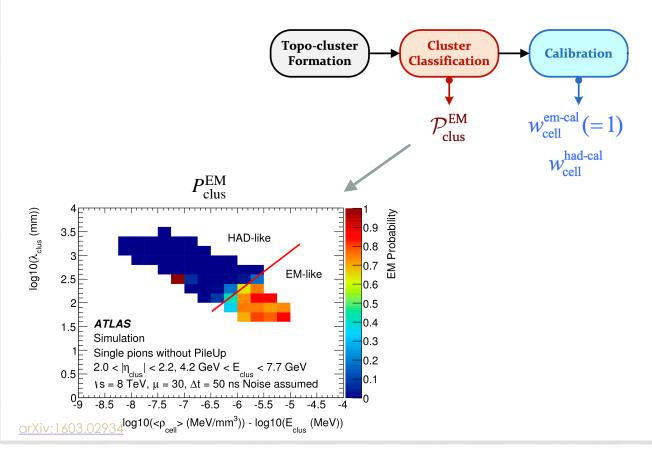
- Baseline hadronic reconstruction in ATLAS
- Uses clusters of calorimeter cells
 - 3D clusters of noise-suppressed calorimeter cells

Hadronic calibration in ATLAS

- Topo-clusters needs to be calibrated:
 - Different detector response and measurement for π^0 vs. π^\pm showers
- Topo-cluster calibration:

Local Cell Weighting (LCW)

1. Classify as electromagnetic or hadronic calculating the EM probability $P_{
m clus}^{
m EM}$



Hadronic calibration in ATLAS

Topoclusters needs to be calibrated:

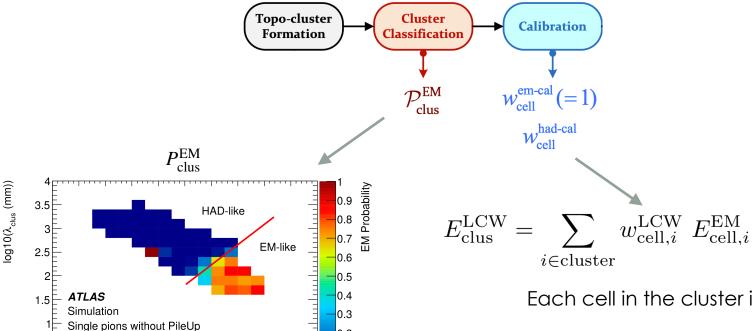
 $2.0 < |\eta_{clus}| < 2.2, 4.2 \text{ GeV} < E_{clus} < 7.7 \text{ GeV}$

-8.5 -8 -7.5 -7 -6.5 -6 -5.5 $arXiv:1603.02934 log10(<\rho_{cell}> (MeV/mm^3)) - log10(E_{clus} (MeV))$

- Different detector response and measurement for π^0 vs. π^\pm showers
- Topo-cluster calibration:

Local Cell re-Weighting (LCW)

- 1. Classify as electromagnetic or hadronic calculating the EM probability $P_{
 m clus}^{
 m EM}$
- 2. Calibrate its energy to account for differences in response.



0.2

0.1

Each cell in the cluster is weighted

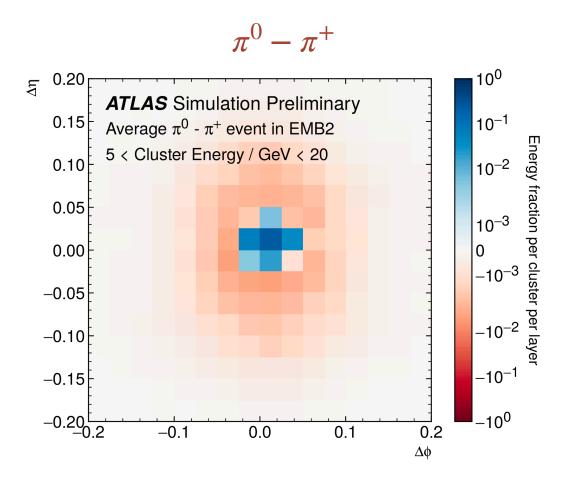
CAN WE USE DEEP LEARNING TO IMPROVE THESE TECHNIQUES?

- Represent each cluster as a pixelated image per calorimeter layer using the appropriate cell granularity.
- Neural Networks trained using single-particle Monte Carlo simulations.

Calorimeter layer 1 Calorimeter layer 2 Calorimeter layer 3 ج 0.20 ا 0.10 ATLAS Simulation Preliminary 0.40 ATLAS Simulation Preliminary ATLAS Simulation Preliminary 0.25 0.15 Average π^0 event in EMB2 Average π^0 event in EMB3 Average π^0 event in EMB1 0.35 🖫 5 < Cluster Energy / GeV < 20 5 < Cluster Energy / GeV < 20 5 < Cluster Energy / GeV < 20 0.08 nergy 0.10 0.20 💆 0.30 o.o6 0.05 0.05 0.05 0.25 0.15 0.00 0.00 0.00 0.20 0.15 luster per 0.10 E 0.04 -0.05 -0.05-0.05 -0.10 0.02 e -0.10-0.100.10 👨 0.05 eq -0.15 -0.15-0.150.05 -0.20___ -0.20___ -0.20 -0.2 ^J0.00 -0.1 0.0 0.1 0.2 -0.1 0.0 0.1 0.2 -0.1 0.0 0.1 0.2 ×10⁻² 0.200 ATLAS Simulation Preliminary 0.175 ATLAS Simulation Preliminary ATLAS Simulation Preliminary 3.5 0.15 Average π^+ event in EMB2 Average π^+ event in EMB3 0.175 ந Average π^+ event in EMB1 0.150 Energy 3.0 Energy 5 < Cluster Energy / GeV < 20 5 < Cluster Energy / GeV < 20 5 < Cluster Energy / GeV < 20 0.150 🥰 0.125 fraction per 0.100 per 2.5 0.05 0.05 0.05 0.125 2.0 ₽ 0.00 0.00 0.100 0.00 0.075 cluster 1.5 -0.05-0.050.075 -0.050.050 ar per layer 1.0 -0.10-0.100.050 ভ্র -0.10 0.025 0.5 -0.15-0.150.025 -0.15 -0.20 -0.20 -0.2 -0.20___ -0.1 0.0 0.1 0.2 -0.10.0 0.1 0.2 -0.10.0 0.1 0.2

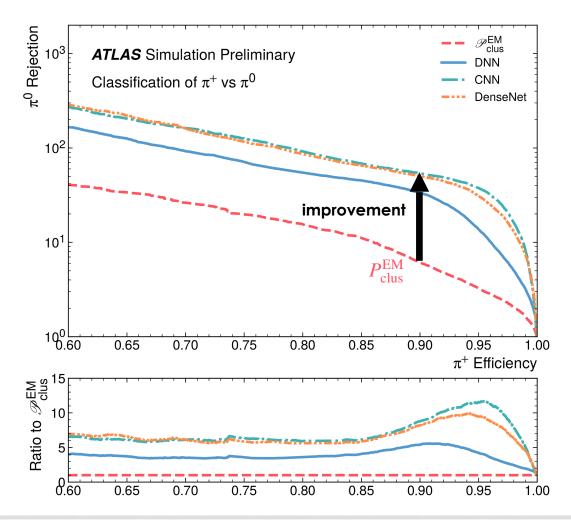
Topoclusters as images

- Represent each cluster as a pixelated image per calorimeter layer using the appropriate cell granularity.
- Neural Networks trained using single-particle Monte Carlo simulations.



Topocluster images: Pion Classification

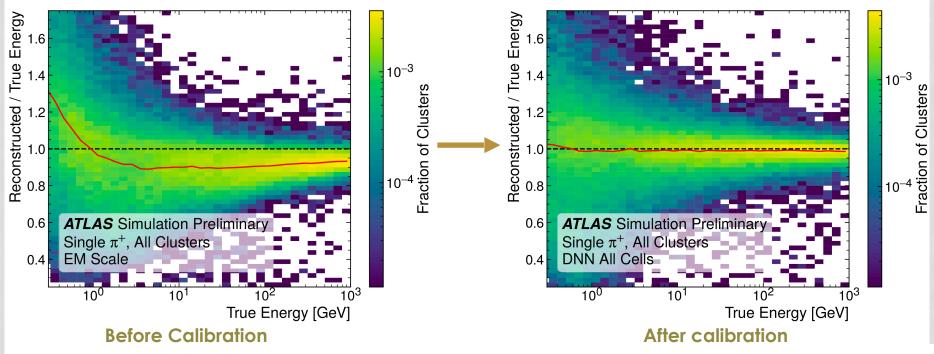
- ullet Machine Learning techniques all do an excellent job of **distinguishing** π^0 **from** π^\pm **showers**
 - $^{\circ}$ Dramatic **improvements** compared to the current classification method using $P_{
 m clus}^{
 m EM}$



Topocluster images: Pion Energy Calibration

- After classifying a cluster, need to calibrate its energy
- Energy calibration goal: Correctly predict the true energy deposited in the cluster.
 - Quantified by measuring the cluster **energy response**: $R = \frac{E^{\text{predicted}}}{E^{\text{truth}}}$ that should be ~ 1

Regression performance for charged pions

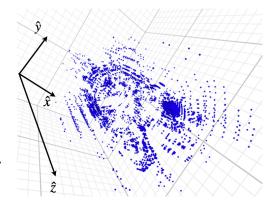


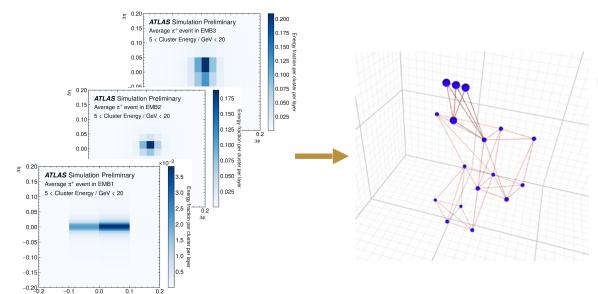
Topoclusters as point clouds

- Point-clouds: set of data points in space
- •Use point clouds representation of clusters:
 - Each point in the set have features (E, η , ϕ , Calo layer) per cell

Advantages with respect image-based approach

- More natural representation of the 3D structure of calorimeter topo-clusters than a series of images
- More flexible as an input structure: Allows for the incorporation of track information. Doesn't require workarounds for the different layer geometries/granularities.



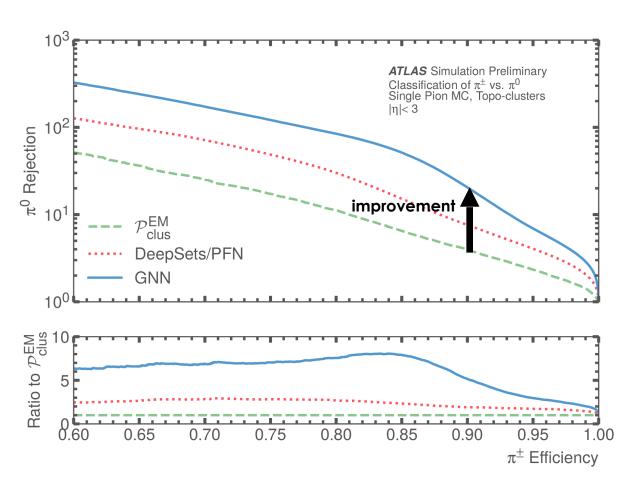


Graph Neural Network (GNN)

- Represent each pion topocluster as a graph
 - Nodes = individual cluster cell features
 - Edges = cell geometry information
 - Global feature = cluster energy

Topoclusters point clouds: Pion classification

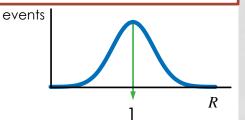
- New **point cloud** approaches (GNN & PFN) far **outperform** the baseline EM cluster probability ($P_{\rm clus}^{\rm EM}$)
- They also perform on par with or better than the image-based CNN approach for pion classification

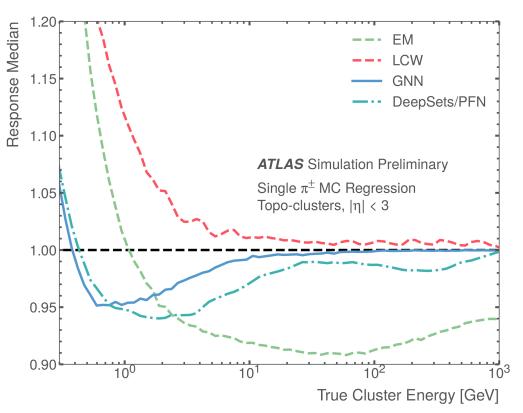


Topoclusters point clouds: Pion Energy Regression

Energy Response

After calibration: Median of the response $R = \frac{E^{\text{predicted}}}{E^{\text{truth}}}$ should be ~1





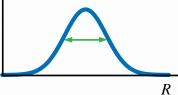
GNN& PFN are closer to one than the EM scale (raw cluster energy) and outperform LCW calibration for low-energy clusters.

Topoclusters point clouds: Pion Energy Regression

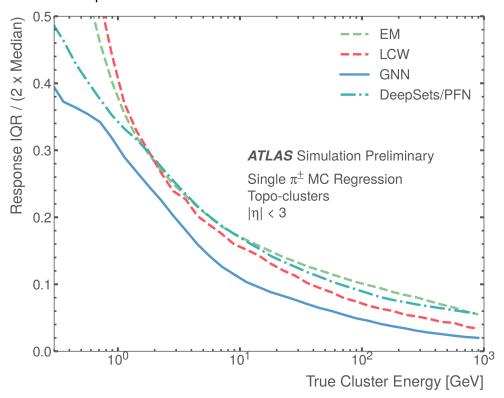
Energy Resolution

After calibration: Spread of the response $R = \frac{E^{\text{predicted}}}{E^{\text{truth}}}$ around the

events



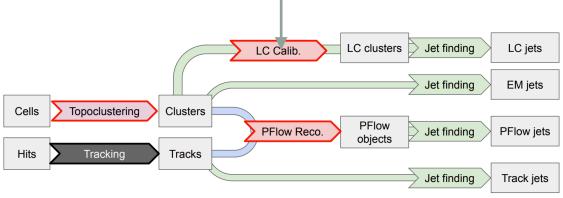
media value to be as small as possible



The pion **energy resolution** of the **GNN**& **PFN** models indicate comparable or narrower response curves than the **EM** and **LCW**.

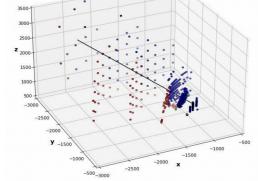
ML for Hadronic reconstruction: Summary and Outlook

- **Deep learning approaches outperform** the **classification** applied in the baseline hadronic calibration ($P_{\rm clus}^{\rm EM}$), and are able to **predict the pion energy** and i**mprove the energy resolution** for a wide range in particle momenta
- These results demonstrates the **potential of deep-learning-based low-level hadronic** calibrations to significantly improve the quality of **particle reconstruction** in the ATLAS calorimeter!
- This is the first step towards a machine learning-based hadronic reconstruction



Next steps:

- Add tracking information (complementary with calorimeters)
- Study **environments closer to reality** (Multiparticles, pile-up, dense environments...jets!)



 Looking forward to implement a Particle Flow deep learning algorithm in ATLAS (uses tracks and calorimeter deposits that ideally will represent particles) Met Significance

UFO

Mono-H

DJR

ΗН

LFV

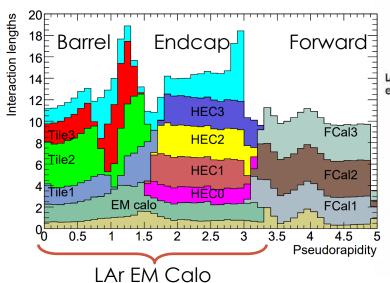
BACKUP

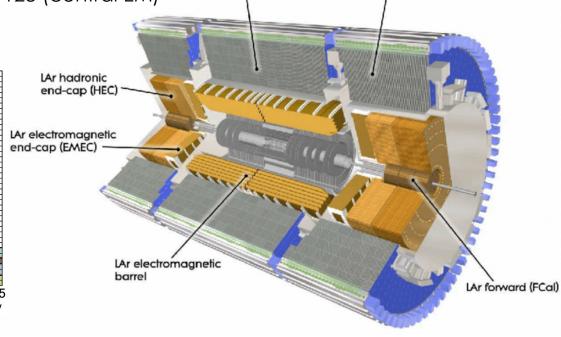
ATLAS CALORIMETERS

* Full coverage $|\eta| < 4.9$

* High granularity in $\Delta \eta \times \Delta \varphi = 0.025 \times \pi/128$ (central EM)

Up to seven depth layers (samplings)

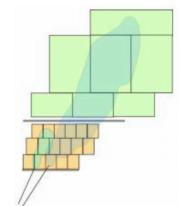




Tile barrel

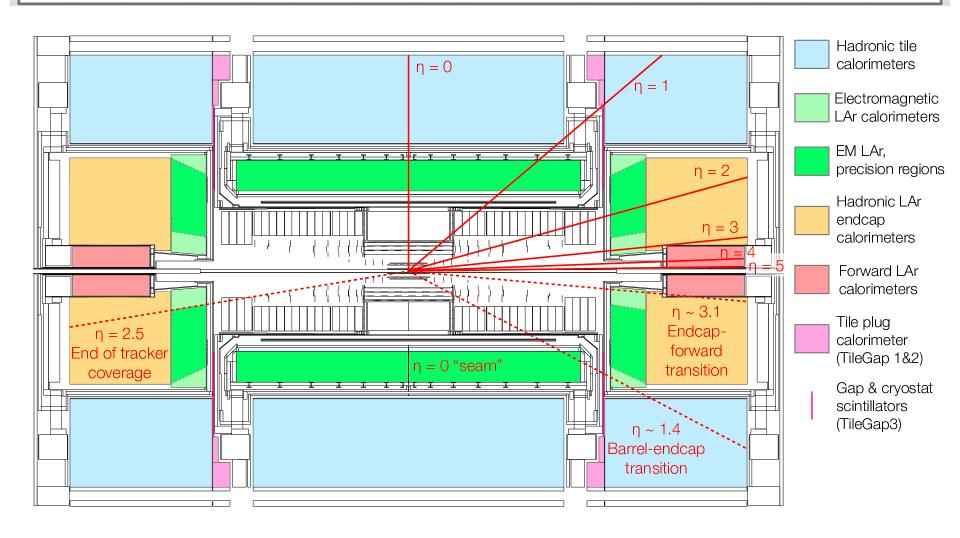
Tile extended barrel

 $|\eta| < 0.7$

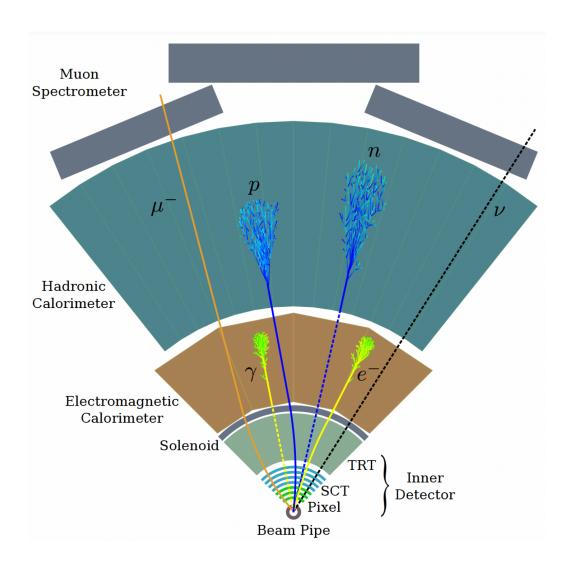


Calorimeter Layer	$\Delta\eta$ Granularity	$\Delta \phi$ Granularity	Interaction Lengths
EMB1	0.025/8 = 0.003125	$\pi/32 \approx 0.1$	$\approx 4X_0$
EMB2	0.025	$\pi/128 \approx 0.025$	$\approx 16X_0$
EMB3	0.05	$\pi/128 \approx 0.025$	$\approx 2X_0$
Tile0	0.1	$\pi/32 \approx 0.1$	≈ 1.5 <i>\lambda</i>
Tile1	0.1	$\pi/32 \approx 0.1$	≈ 4 <i>\lambda</i>
Tile2	0.2	$\pi/32 \approx 0.1$	≈ 2 <i>\lambda</i>

ATLAS calorimeters with pseudo rapidity



OBJECT RECONSTRUCTION



Topo-clusters: 3D clusters of noise-suppressed calorimeter cells

Eur. Phys. J. C 77 (2017) 490

- Calorimeter jet constituents
- Baseline and most common inputs to jet algorithm

To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

Define for each cell: significance Ratio of energy measured to expected average energy due to noise in that cell

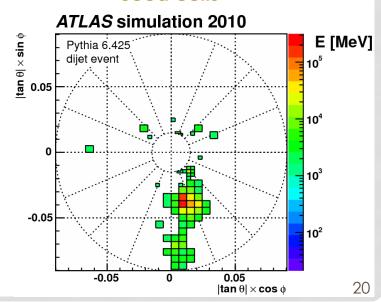
$$\zeta_{cell}^{EM} = \frac{E_{cell}^{EM}}{\sigma_{noise cell}^{EM}}$$

Clustering algorithm

Clusters are **seeded** by cells with large energy over noise ratio

 $* |\zeta| > 4$

Seed cells



Topo-clusters: 3D clusters of noise-suppressed calorimeter cells

Eur. Phys. J. C 77 (2017) 490

- Calorimeter jet constituents
- Baseline and most common inputs to jet algorithm.

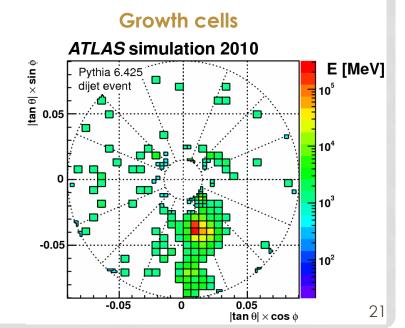
To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

Define for each cell: significance Ratio of energy measured to expected average energy due to noise in that cell

$$\zeta_{cell}^{EM} = \frac{E_{cell}^{EM}}{\sigma_{noise,cell}^{EM}}$$

Clustering algorithm

- Clusters are seeded by cells with large energy over noise ratio
 - $* |\zeta| > 4$
- Expanded on neighbouring cells
 - * All **Neighbors** with $|\zeta| > 2$ are added



Topo-clusters: 3D clusters of noise-suppressed calorimeter cells

Eur. Phys. J. C 77 (2017) 490

- Calorimeter jet constituents
- Baseline and most common inputs to jet algorithm.

To form a topo-cluster: Use a recursive algorithm to combine cells with related energy deposits

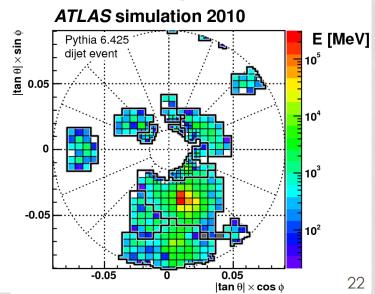
Define for each cell: significance Ratio of energy measured to expected average energy due to noise in that cell

$$\zeta_{cell}^{EM} = \frac{E_{cell}^{EM}}{\sigma_{noise,cell}^{EM}}$$

Clustering algorithm

- Clusters are seeded by cells with large energy over noise ratio
 - $* |\zeta| > 4$
- Expanded on neighbouring cells
 - * All **Neighbors** with $|\zeta| > 2$ are added
- All neighbouring cells are added regardless of the significance
 - $* |\zeta| > 0$
- Final cluster splitting step breaks up large topoclusters with multiple local maxima

Boundary cells

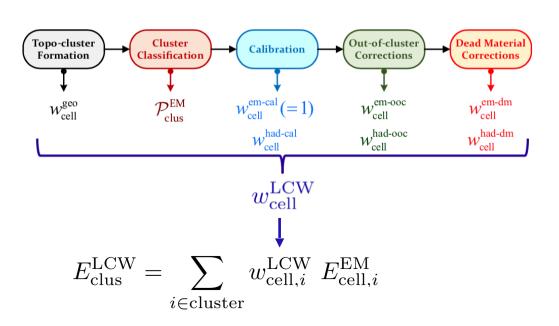


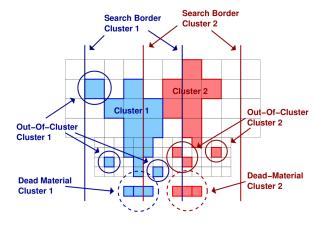
EM AND LCW SCALES

Topo-clusters enter jet finding at one of two scales:

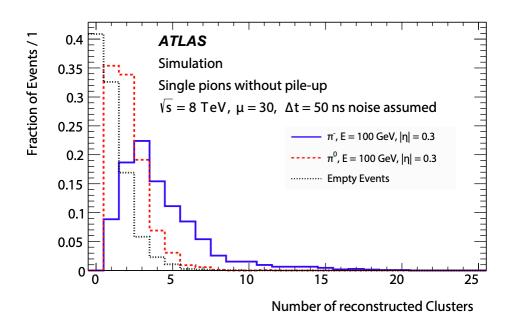
CERN-PH-EP-2011-191

- Electromagnetic (EM) scale: same scale as the cells. Used for small-R jets.
- Local cell weighted (LCW) scale: Topo-clusters calibrated based on their properties. Used for large-R jets.
 - * Topo-clusters are identified as either electromagnetic or hadronic. Weights are then assigned to account for
 - * Differences in detector response (EM vs. HAD)
 - * Energy falling in unclustered cells
 - * Energy deposited in inactive (dead) regions of the detector

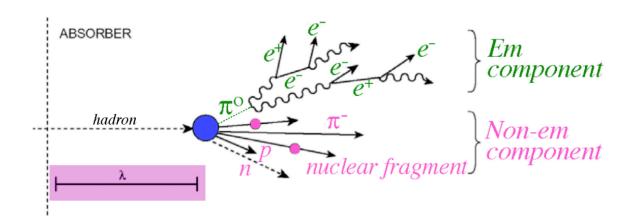


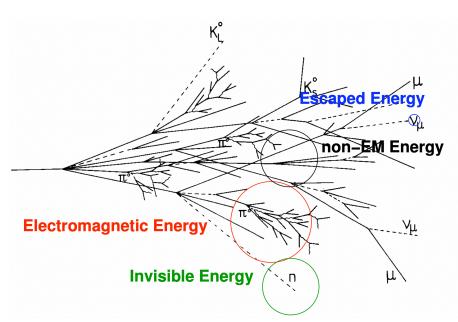


Eur. Phys. J. C 77 (2017) 490

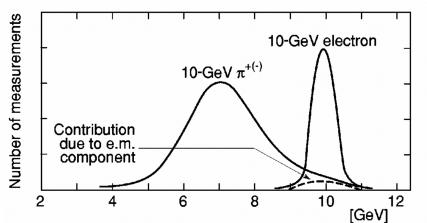


HADRONIC SHOWER





https://cds.cern.ch/record/692252/files/RevModPhys.75.1243.pdf



Signal (in energy units) obtained for a 10 GeV energy deposit 5

COMBINING CLUSTERS AND TRACKS

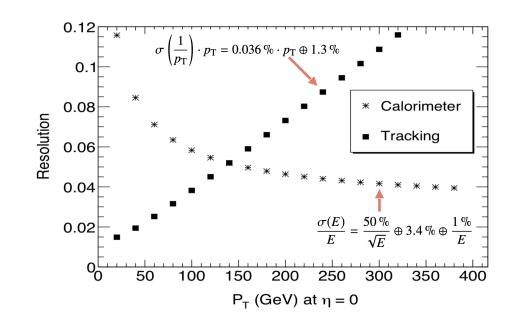
Calorimeter and tracker provide complementary information

Tracker:

- * Sensitive to charged particles
- * Better angular resolution
- * Able to assign tracks to pile-up or hardscatter vertex.
- * Better reconstruction efficiency and momentum resolution at low pT

Calorimeters:

- * Sensitive to both neutral and charged particles.
- * Better energy resolution at high pT



Topocluster images: Merged Deep Fully Connected Network (DNN)

* Images are flatten into one-dimensional vectors.

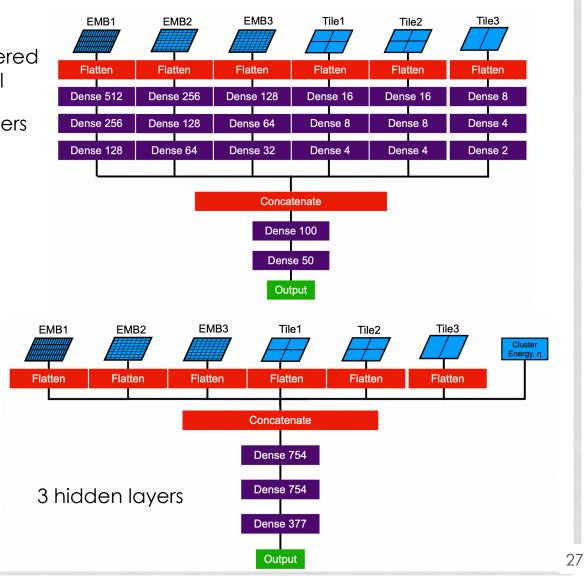
Classification

each calorimeter layer is considered as a separate input to the model

3 hidden layers

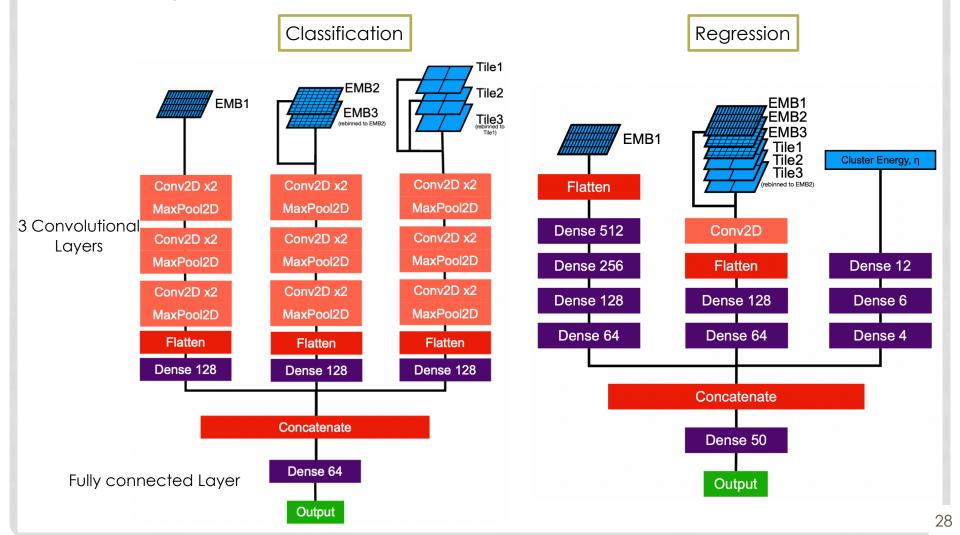
Regression

All cells are concatenated into a single vector of dimension 752



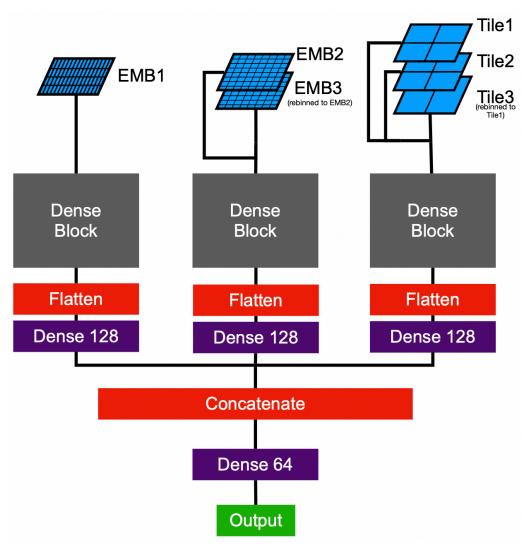
Topocluster images: Convolutional Neural Network (CNN)

- * The entirety of the two-dimensional images are used as inputs to the model.
- * The layers of the calorimeter can be thought of as color channels of traditional image classification problems



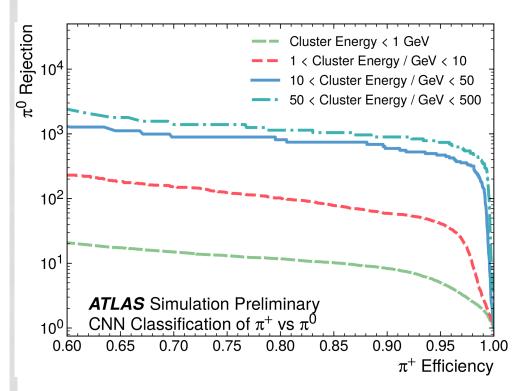
Topocluster images: Densely Connected Convolutional Networks (DenseNets)

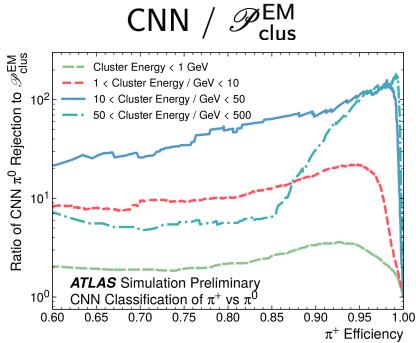
Every layer receives as inputs the concatenated feature maps from every previous layer



Topocluster images: CNN classification performance

- * classifier performs increasingly better at higher energies
- * CNN was not explicitly trained with energy as an input, but the shower shape's dependence on energy is sufficient to provide effective separation at all energies.

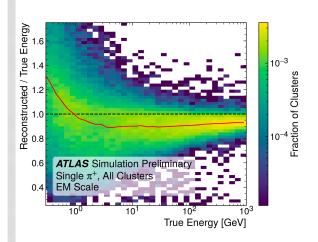


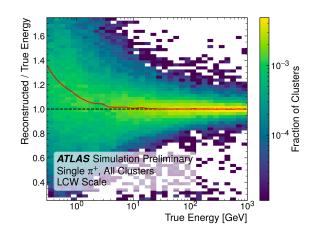


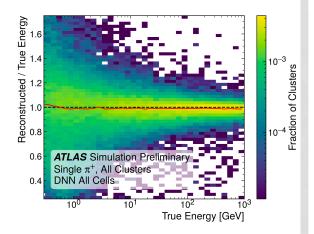
Topocluster images: Pion Energy Calibration

- After identifying a cluster as hadronic/EM, need to convert the signal into an energy measurement
- Energy regression goal: Correctly predict the true energy deposited in the cluster.
 - Quantified by measuring the cluster energy response: $R = \frac{E}{E^{\text{truth}}}$ that should be ~ 1

Regression performance for charged pions





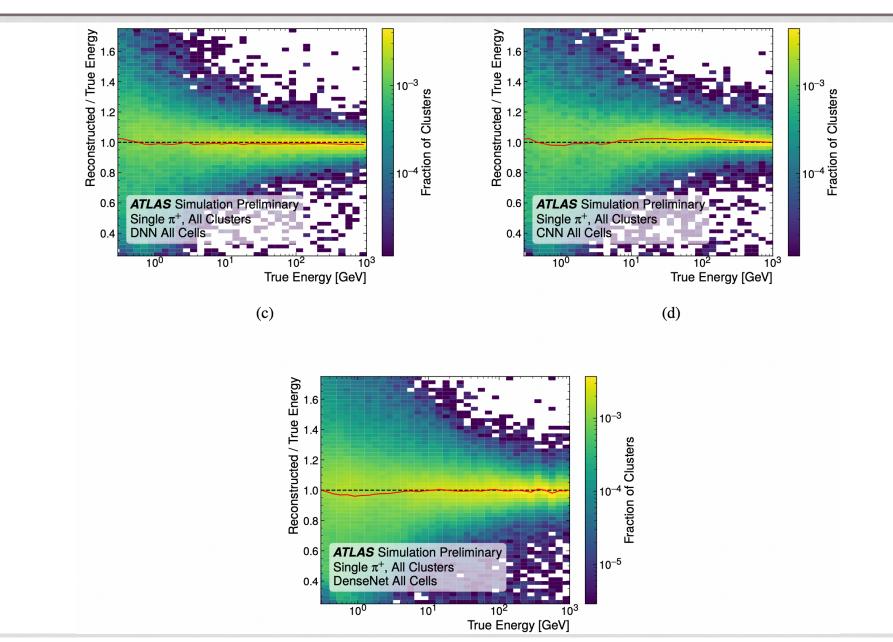


Raw "EM" scale under-estimates R

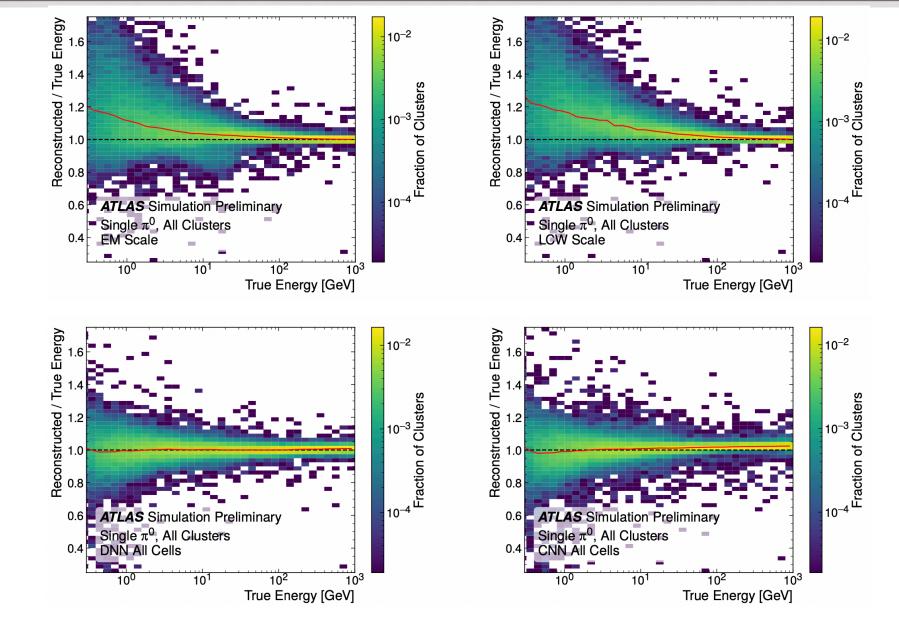
LCW over-estimates R at low-energy

DNN regression does an excellent job nearly everywhere

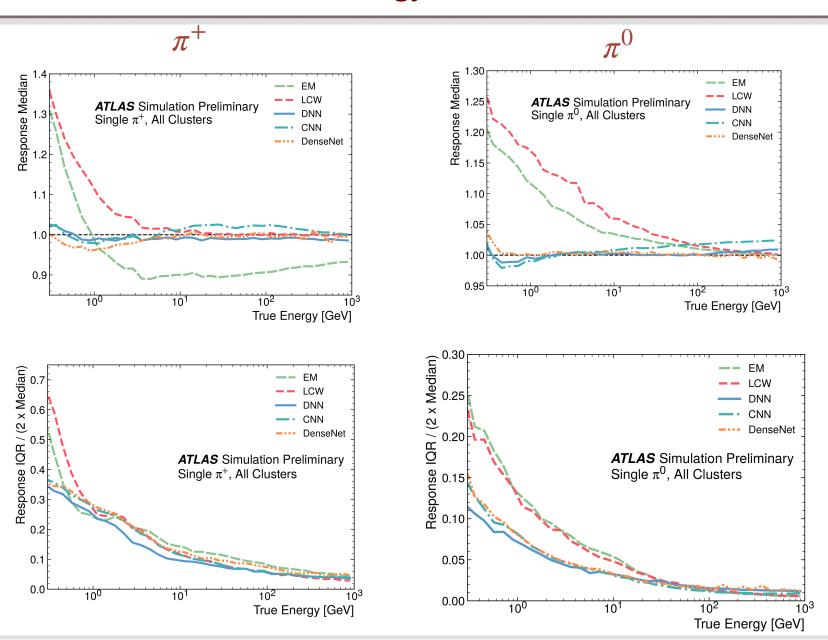
Topocluster images: Pion charged Energy Calibration



Topocluster images: Neutral Pion Energy Calibration

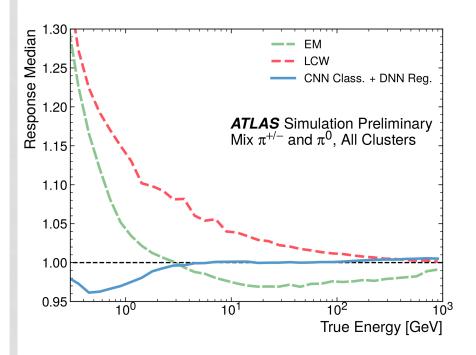


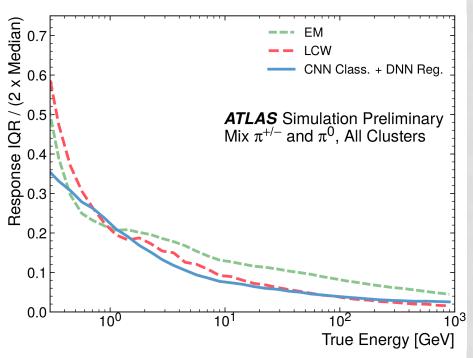
Pion Energy Calibration



Mixed sample of $\pi \pm$ and $\pi 0$

- First look at the performance with jets
 - \circ π^+ , π^- and π^0 mixed in a 1:1:1 ratio
 - Roughly correspond to the expected distribution in jets



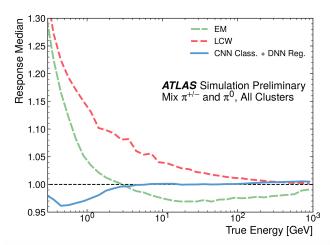


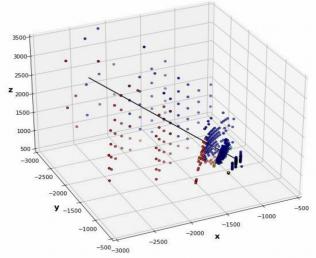
Outlook

Looking forward studying more complex scenarios:

- First look at the performance with jets
 - $^{\circ}\pi^{+}$, π^{-} and π^{0} mixed in a 1:1:1 ratio
 - Roughly correspond to the expected distribution in jets

- Another handy way to represent energy deposits is as a point-cloud
 - Points contains cell info & cluster-level info.
 - Allows for combining signals from the inner detector (tracks) and from calorimeter (clusters)

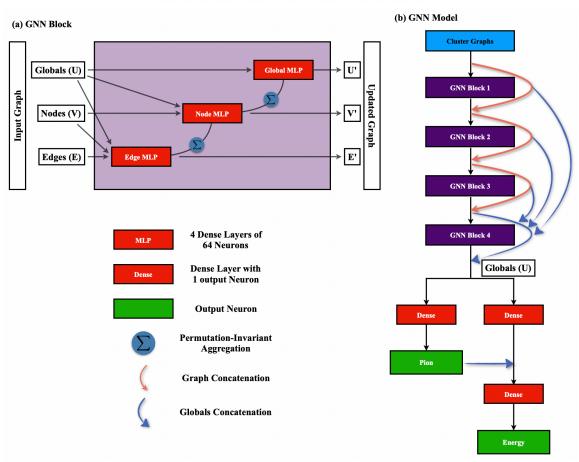




Topoclusters point clouds: Graph Neural Network (GNN)

The classification & regression losses are balanced together in the same model using a loss function that accommodates both tasks

$$\mathcal{L} = (1 - \alpha) \mathcal{L}_{\text{classification}} + \alpha \mathcal{L}_{\text{Regression}}$$



Deep Sets

- Deep Sets are designed for permutation-invariant & variable-length data
- One can treat Topo-clusters as simple unordered "set"
- "Deep Sets" paradigm:

Observable Decomposition. An observable \mathcal{O} can be approximated arbitrarily well as:

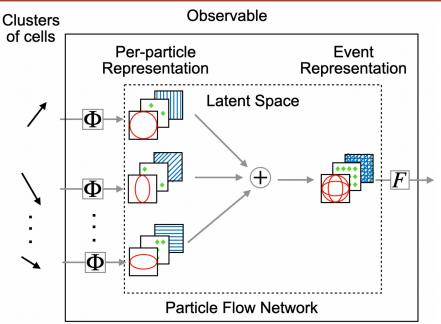
$$\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^M \Phi(p_i)\right),\tag{1.1}$$

where $\Phi: \mathbb{R}^d \to \mathbb{R}^\ell$ is a per-particle mapping and $F: \mathbb{R}^\ell \to \mathbb{R}$ is a continuous function.

Particle Flow Network (PFN)

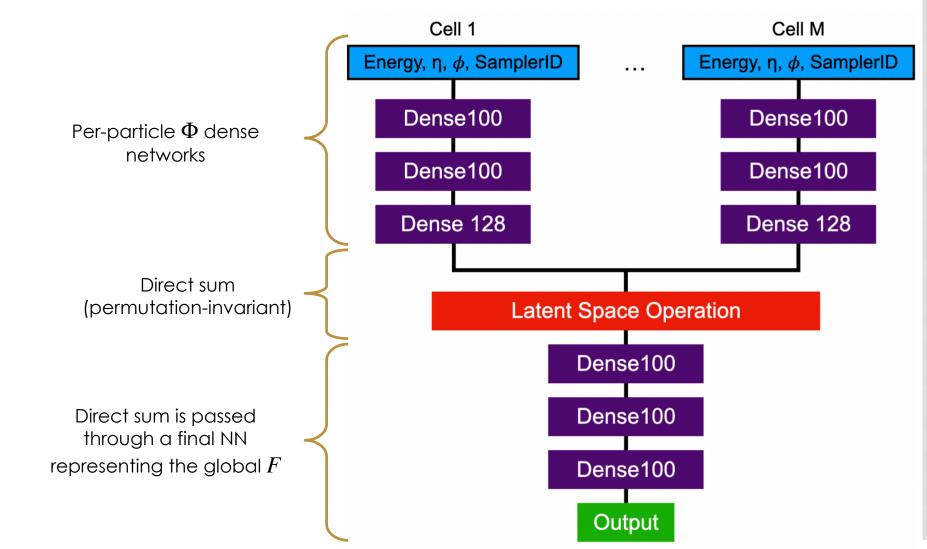
- Adapts the Deep Sets framework for particle physics data
- Each set point have features per cell

PFN : O =
$$\sum_{i=1}^{M} \Phi(E, \eta_i, \phi_i, SamplerID)$$



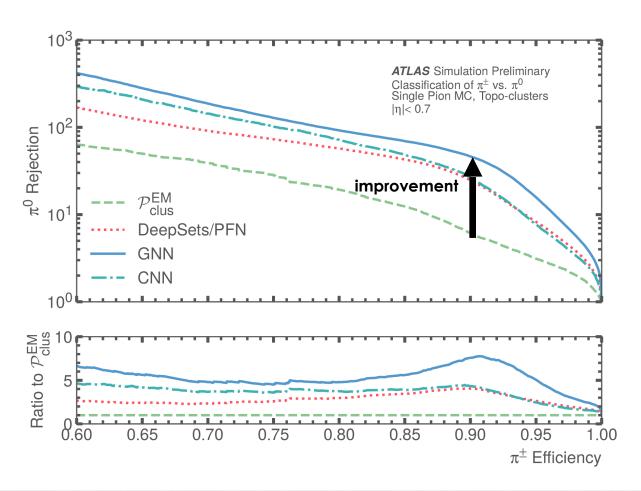
Particle Flow Network implementation

Approximate Φ and F with Neural Networks



Topoclusters point clouds: Pion classification

- New **point cloud** approaches (GNN & PFN) far **outperform** the baseline EM cluster probability $(P_{clus}^{\rm EM})$
- They also perform on par with or better than the image-based CNN approach for pion classification



Pion classification with Particle Flow Network (PFN)

