New Directions for Discovering Physics Beyond the Standard Model

℀TRIUMF

Science Week July 18 - 22, 2022

Shaping the future of TRIUMF

Gopolang (Gopi) Mohlabeng

19 July 2022

4 July 2022 was a special date in particle physics

Marked **10 year anniversary** of announcement that **Higgs Boson** was **discovered** at large hadron collider (LHC)

ATLAS collaboration : https://cds.cern.ch/record/2627611

4 July 2012, Higgs discovery announcement in packed auditorium at CERN (credit: <u>https://home.cern/fr/node/76</u>)

Higgs discovery had many important implications

One of the biggest being the completion of the standard model (SM)

STANDARD MODEL OF ELEMENTARY PARTICLES

Image: quantumdiaries.org

All particles theorized in SM have been **experimentally verified** Been very successful in explaining much of observed phenomena

Higgs discovery had many important implications

One of the biggest being the completion of the standard model (SM)

All particles theorized in SM have been experimentally verified

Been very successful in explaining much of observed phenomena

SM one of the most successful theories created

1957 T.S. Lee, C.N. Yang: Parity Violation 1965 R. Feynman, J. Schwinger, S. Tomonaga: QED 1968 L. Alvarez: Meson Discovery 1969 M. Gell-Mann: Hadron classification 1976 **B. Richer, S. Ting**: Charm quark discovery 1979 S. Weinberg, S. Glashow, A. Salam: Electroweak unification 1980 J. Cronin, V. Fitch: CP violation 1982 K. Wilson: Renormalization group 1984 C. Rubbia, S. Van der Meer: W/Z boson discovery 1988 L. Lederman, J. Steinberger, M. Schwartz: Muon neutrino 1990 H. Kendall, J. Friedman, R. Taylor: Nuclear partons 1995 M. Perl, F. Reines: Tau lepton discovery 1999 G. t'Hooft, M. Veltman: Mathematical consistency of SM 2002 R. Giacconi, R. Davis, M. Koshiba: Cosmic Neutrinos 2004 D. Gross, H. Politzer, F. Wilczek: QCD 2008 Y. Nambu, M. Kobayashi, T. Maskawa: 3 Quark generations 2013 P. Higgs, F. Englert: Higgs & EW symmetry breaking 2015 T. Kajita, A. McDonald: Neutrino Oscillations

> 18 Nobel prizes

Yet SM does not tell complete story of Universe

Many puzzles SM cannot explain

1. SM cannot explain dark matter

Constituents of our universe

Particle physicists: fundamental physics that governs these sectors?

We know dark matter exists

Astronomy & Cosmology tell us

1. Rotation Curves

2. Gravitational Lensing

3. CMB Acoustic Peaks 6000 WMAP 7yr ± ACBAR 1 5000 *l*(*l*+1)C_{*l*}^{TT}/(2π) [μK²] QUaD ፤ 4000 3000 2000 1000 0 1500 2000 10 100 500 1000 Multipole Moment (1)

4. Large Scale Structure

5. Galaxy/Cluster Collisions

6. Matter Power Spectrum

Images: adapted from K. Mack

Inconvenient truth: We don't know what its made of

2. Cannot explain where neutrino masses come from

In 1998, Super-K announced neutrino oscillations

1998 presentation by Takaaki Kajita

Image: twitter.com/annalisavarri

Neutrinos change flavor as they propagate

Image: sanfordlab.org

- As neutrinos propagate they change flavor
- Oscillations only true if neutrinos have mass
- For this result the 2015 Nobel Prize was awarded to T. Kajita & A. McDonald

Where do neutrino masses come from? We don't know

Yet SM is not complete theory of Universe

3. Doesn't seem to explain some recent experimental anomalies

A particularly long-standing anomaly > 2 decades

Muon g-2 anomaly: discrepancy between exp and theory in muon anomalous magnetic moment

Recent FNAL E989 results move closer to new physics explanation

SM does not tell complete story of Universe

HIGGS BOSON UP CHARM TOP GLUON 1,275 GeV/c2 mass 2,3 MeV/c² 173,07 GeV/c² 0 126 GeV/c^2 Q 0 charge ²/₃ 2/3 U H g C 1/2 1/2 1 0 spin 1/2 R DARK HIGGS DOWN BOTTOM PHOTON STRANGE Κ 4,8 MeV/c2 95 MeV/c² 4,18 GeV/c2 0 S ???? G -1/3 -1/3 0 -1/3 φ 1 1/2 1/2 1/2 ELECTRON MUON TAU **Z BOSON** F 105,7 MeV/c2 1,777 GeV/c2 0,511 MeV/c2 91,2 GeV/c2 B L -1 -1 0 EP Ζ 0 e 1/2 1/2 1/2 S TO 0 **ELECTRON NEUTRINO** MUON TAU **W BOSON** GRAVITON NEUTRINO NEUTRINO N 80,4 GeV/c2 N <2,2 eV/c2 <0,17 MeV/c2 <15,5 MeV/c2 S ???? 0 0 ± 1 S W G 1/2 1/2 DARK MATTER DARK MATTER DARK BOSON DARK MATTER ???? χ1 ???? χ2 ???? χ3 ???? DARK MATTER **NEW FORCES**

BEYOND STANDARD MODEL OF ELEMENTARY PARTICLES

- Dark matter
- neutrino mass origin
- explaining experimental anomalies
- Matter antimatter asymmetry
- Gravity
- + Many Others

Need New Theories Beyond the Standard Model

Theorists & experimentalists are working hard to find BSM physics

Search for new physics separated into 3 complementary frontiers

All have new experiments & techniques for discovering BSM physics

Cosmic Frontier

Search for new physics from astrophysics & cosmology

e.g. DM particles can scatter with SM particles in underground experiments

DM direct detection

```
XENON1T & XENONnT
LUX-ZEPLIN
SENSEI
Super-CDMS
DEAP-3600
DarkSide-20k
T
```

Housed at SNOLAB & significant contributions from TRIUMF

Image: symmetry magazine

e.g. Xenon1T detector

DM particles can annihilate in astrophysical structures

indirect detection

- Cherenkov Array Telescope
- Hyper-Kamiokande

AMS-02

Image: vivierjapon.es

Cosmic Frontier

Search for new physics from astrophysics & cosmology

DM can also be primordial blackholes or composite objects

Search using gravitational waves: LIGO, LISA

Gravitational lensing: EROS-2 survey, CHIME, CMB -S4

Ultralight particles called Axions

Light shining through wall: LSW, ALPS

Helioscopes: CAST, IAXO

Usually lower energy/high intensity experiments

Search for light weakly coupled new particles

e.g. Fixed-target experiments

Low energy colliders

BaBar

Intensity Frontier

Belle II

KLOE

Image: <u>belleII.org</u>

Intensity Frontier

Usually lower energy/high intensity experiments

NP can show up in Precision measurements of SM

Rare meson decays

Some experiments:

Usually high energy experiments directly produce new heavy particles

Energy Frontier

e.g. Bump/Resonance hunting

Some experiments:

LHC: High Lumi, High Energy International Linear collider (ILC) Future Circular collider (ILC) Cool Copper Collider (C³)

ATLAS experiment at LHC

Energy Frontier

Usually high energy experiments directly produce new heavy particles

Long-lived particle searches

New particle decay in outer layers of detector or in another detector a few meters downstream

Some experiments:

ATLAS CMS FASER SeaQuest/DarkQuest/LongQuest

MATHUSLA CODEX-b

. . .

visible SM

tracks or

decay product

that do not

Orthogonal Trigger

non-iso event from SM QCD

(c)

Looking Forward

Current era of multiple experimental probes present perfect opportunity to solve mysteries of the universe

Search for new particles at all frontiers are intensifying with

- New strategies & experiments for **detecting DM from laboratory to the cosmos** are developing at fast pace

- Accelerator experiments increasing energy & intensity to extend reach for production of new particles

- Neutrino program intensifying, building larger more sensitive detectors

Looking Forward cont'd

- Precision experiments are testing the SM to its limits, while trying to extract signals of new physics

- Theorists developing new and exciting ideas to maximally support experimental effort

We may be heading towards golden age for particle physics

TRIUMF & Canada will be at the cutting edge

Thank you

