Radioisotopes in Medicine & the McMaster Nuclear

Reactor

Andrea Armstrong

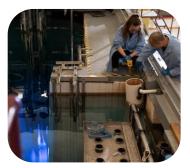

Research Scientist & Adjunct Professor

BRIGHTER WORLD | mcmaster.ca

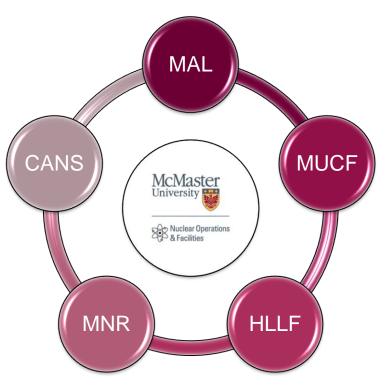
Canada's Most Research-Intensive University

Hamilton, ON, Canada

- Student-centred, research-intensive university
 - Among top 75 universities in the world
 - 70⁺ research centres and institutes
 - 33,000 students
- Full lifecycle nuclear research programs
 - Nuclear safety
 - Engineering physics
 - Materials science
 - Detector physics
 - Radiation biology & ecology
 - Waste storage & reduction
 - Radiopharmaceuticals



McMaster: Canada's Nuclear University


Home to a unique suite of world class nuclear research facilities.

Centre for Advanced Nuclear Systems

McMaster Nuclear Reactor

High Level Laboratory Facility

McMaster Accelerator Laboratory University

BRIGHTER WORLD | mcmaster.ca

MNR: Supporting High Impact Research

A national research resource

Health & Medicine

Radiopharmaceuticals, brachytherapy & implantable devices, disease biochemistry, clinical diagnostics & personalized medicine

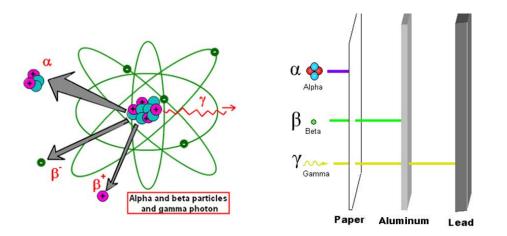
Energy & Environment Alternative fuels, ecology, earth science & origins, nuclear energy, nuclear forensics, radiation biology, space exploration

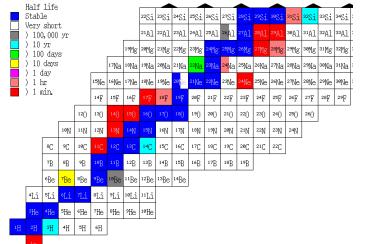

Materials Science Neutron scattering → establishing an national user facility for Canada's neutron beam science community

The McMaster Nuclear Reactor (MNR)

Canada's only major neutron source

- 5 MW Materials Test Reactor
 - $\circ \quad \phi_{max} = 1 \ x \ 10^{14} \ n/cm^2 \bullet s$
 - Transition to 24 h operation 2023-24
- Variety of research facilities
 - Neutron diffraction
 - Small Angle Neutron Scattering
 - Neutron radiography
 - Intense positron beam
 - Industrial hot cell
 - 10 kCi Co-60 source (gamma irradiations)
- Range of irradiation facilities
 - Radioanalytical, high flux large volume
 - Differing neutron flux profiles
 - Pb- and Cd-shielded sites available



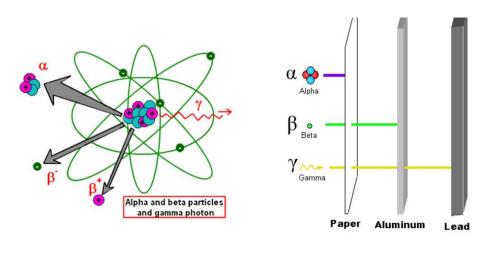


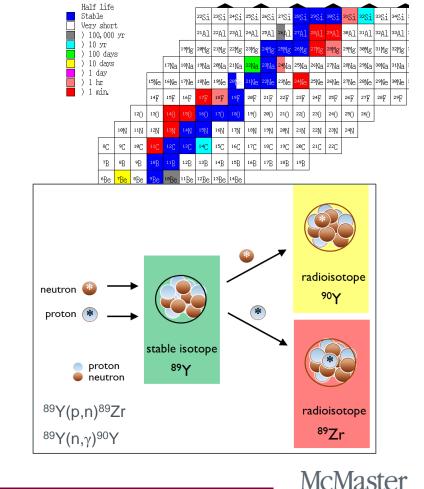
Radioisotopes: How They're Made

Cyclotrons & nuclear reactors are complementary

• Radioisotope: nucleus in excited state

Decay properties (emissions, half-life) determine utility




Radioisotopes: How They're Made

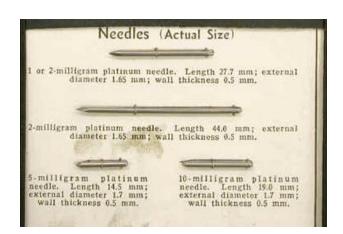
Cyclotrons & nuclear reactors are complementary

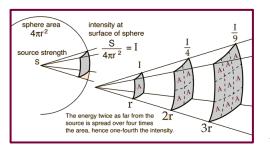
• Radioisotope: nucleus in excited state

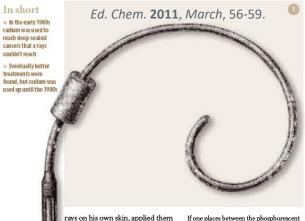
Decay properties (emissions, half-life) determine utility

BRIGHTER WORLD | mcmaster.ca

7


University


Radium-226: The Original Medical Isotope Brachytherapy (1900s)


1898: Marie Curie discovers radium (Ra-226)

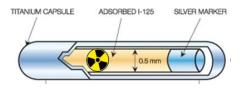
"Furthermore, radium owns astonishing physiologic properties. An exposure of the arm to two 20 minute sessions has produced **an inflammation of the skin** which has lasted two weeks..."

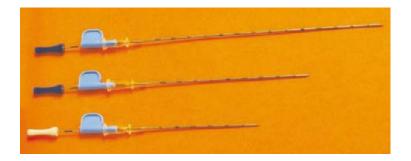
- Friedrich Walkoff (1900)

rays on his own skin, applied them in the hope of "burning out" a patient's breast cancer. Although this was unsuccessful, by November that year x-rays were being used to cure superficial cancers, such as skin

If one places between the phosphorescent substance and the paper a piece of money or a metal screen pierced with a cut-out design, one sees the image of these objects appear on the negative ... One must conclude from these experiments that the

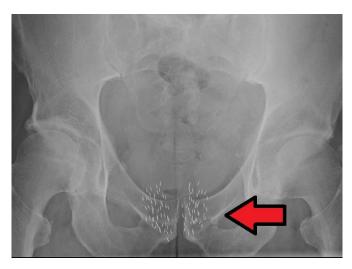
"...the cervix [had] a large mass of growth with a large crater-like cavity. Twelve exposures of half an hour each with a 'strong' tube... [caused] **breaking down and diminishing the malignant tissue**."


– John MacLeod (1904)



Low Dose Rate (LDR) Brachytherapy Today

lodine-125: $t_{1/2} = 60 \text{ d}$; $E_{\gamma} = 28-31 \text{ keV}$. Palladium-103: $t_{1/2} = 17 \text{ d}$; $E_{\gamma} = 21 \text{ keV}$.


Localized, non-aggressive (prostate) cancer
 52% decline in mortality 1993-2015

X-ray image of implanted I-125 seeds

Iodine-125 Production Overview

McMaster: 60% of global supply - 70,000 patients every year

Xe-124 loaded into cylinder

Neutron irradiation

I-125 recovery

Making a stock solution MCMaster University

BRIGHTER WORLD | mcmaster.ca

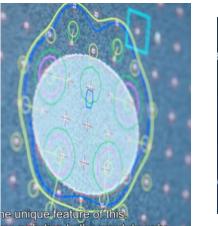
Iodine-125 Production Overview

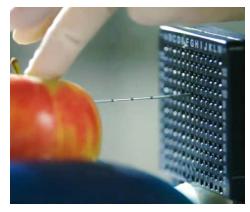
More than 200 patients treated every day

"Dispensing" stock solution

Customer vial

Shipping to seed manufacturers


Modern Brachytherapy


Permanent (Low Dose Rate), iodine-125 or palladium-103

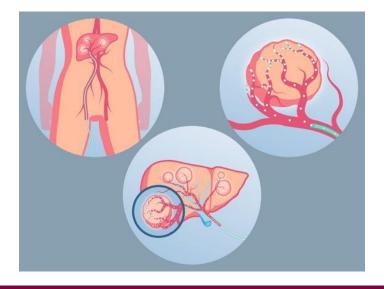
• Image-guided implantation, complete in 60-120 minutes

Seed manufacturing

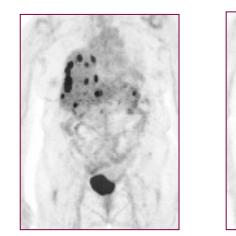
Seed implantation

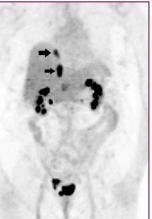
- Alternative to External Beam Radiation Therapy?
 - \$2,719 US per patient

BRIGHTER WORLD | mcmaster.ca


Cost: Brookland & Mallin, Bull. Am. Coll. Surgeons 2019 (April)

Treatment planning: seed selection & implantation modelling

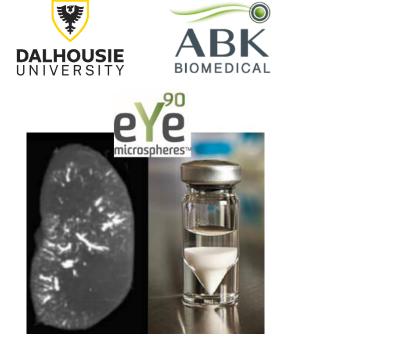

Building on Brachytherapy: Radioembolic Therapy


Liver cancer therapy (1990s)

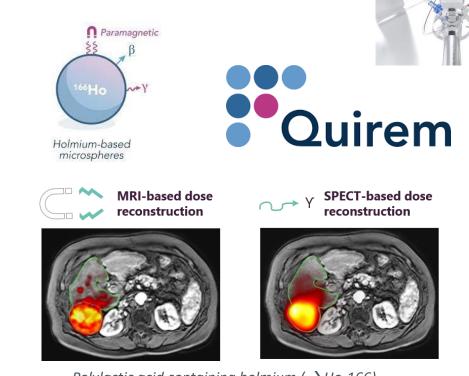
- Dual action therapy
 - 1. Block blood supply to tumour
 - 2. Blast with beta particles

- TheraSphere (Y-90 in glass matrix)
 - o 70,000+ patients, FDA approval 2021
 - Similar to SIRSpheres (resin)

PET imaging before (left) and after (right) treatment



J. Vasc. Interv. Radiol. 2005, 16, 1641–1651

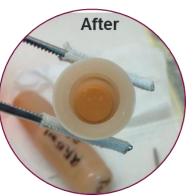


The Next Generation: Imageable Radioembolics

R&D at the McMaster Nuclear Reactor

"Radiopaque" glass microspheres (Y-90)

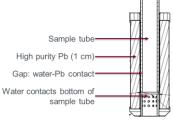
Polylactic acid containing holmium (\rightarrow Ho-166)



QuiremSpheres: Low Gamma Irradiations Required

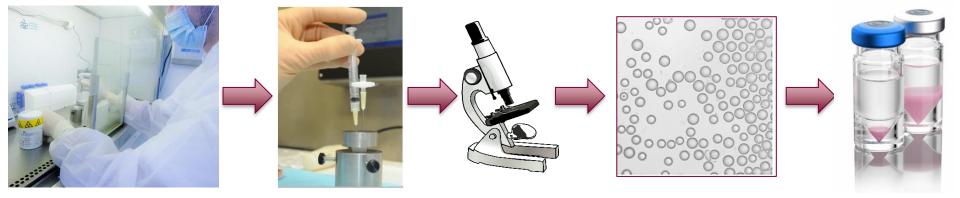
Vial & site redesign

• Initial experiments: standard conditions



- First patient treatment from McMaster June 2019
 - 20-90% of global supply (Europe)
 - Production capacity +200% since 2019

• Pb sample chamber

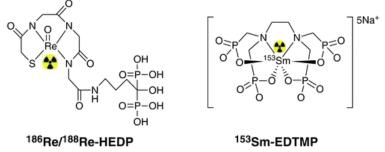


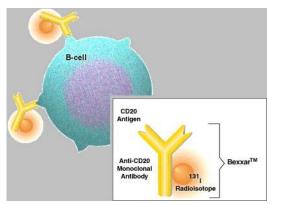
Current QuiremSpheres Work

North American clinical trial launching 2023

- cGMP Dispensing Lab: joint initiative with CPDC
 - 。 Clinical trial site in Vancouver possible first in North America

- Basic science: enhancing survival of QS post-suspension
 - Roles of beta, gamma, temperature, etc

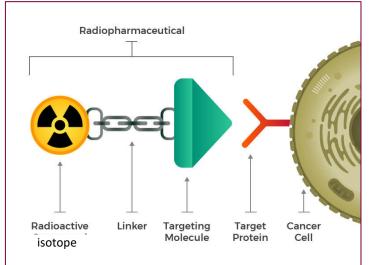



Therapeutic Radiopharmaceuticals (Targeted Internal Radionuclide Therapy)

Treating systemic (not localized) cancers

- 1937: John Lawrence uses P-32 to treat blood cancers
 Questionable effectiveness
- 1942: use of I-131 to treat metastatic thyroid cancer
 Standard of care for decades
- 1980s: bone pain palliation
 - 。 Sr-89, Sm-153, Lu-177, Re-186, Re-188, etc.
- 1990s: antibody based drugs
 - Bexxar (I-131), Zevalin (Y-90)
 - Non-Hodgkins Lymphoma

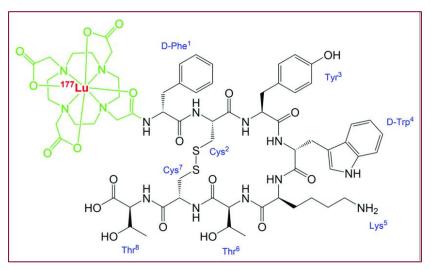
"Disguising" radiometals as phosphate


Monoclonal antibody directs I-131 to cancer

Receptor/Antibody-Targeted Radiopharmaceuticals

Advances in molecular biology enable new drugs

- 2000s: biochemical differences in healthy & diseased tissues
 - Attach biological "vector" to hit "target" cells
- ¹⁷⁷Lu-DOTA-TATE (neuroendocrine tumours)
 EU since 1990s, Health Canada approval 2019
- ¹⁷⁷Lu-PSMA-617 (prostate cancer)
 US FDA approval 2022
- Biological targets: HER2, PSMA, UPAR, ER, HGF...

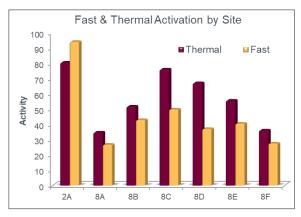

Schematic representation of a targeted radiopharmaceutical

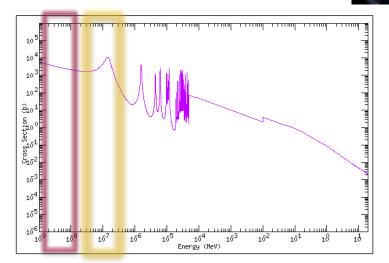
Receptor/Antibody-Targeted Radiopharmaceuticals

Advances in molecular biology enable new drugs

- 2000s: biochemical differences in healthy & diseased tissues
 - Attach biological "vector" to hit "target" cells
- ¹⁷⁷Lu-DOTA-TATE (neuroendocrine tumours)
 EU since 1990s, Health Canada approval 2019
- ¹⁷⁷Lu-PSMA-617 (prostate cancer)
 US FDA approval 2022
- Biological targets: HER2, PSMA, UPAR, ER, HGF...

Peptide seeks out NETs; Lu-177 destroys them



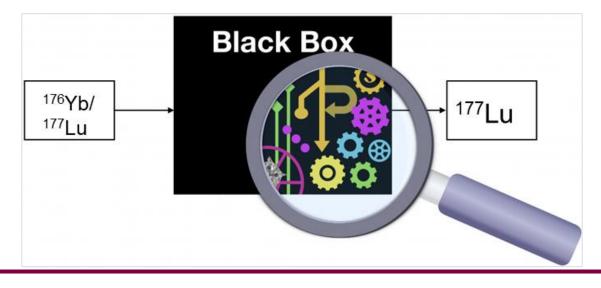

Direct Production of Lu-177: ¹⁷⁶Lu(n, γ)¹⁷⁷Lu (σ = 2100 2915 b)

Supporting Canadian researchers since 2012.

- Capitalizing on fast neutron resonance (site 2A)
 - S.A. >1.6 Ci/mg @ 80% enrichment (20 Ci/mg 24/5 @ 5 MW)
 - 。 Lu-177m content 0.0097%
 - Production capacity essentially unlimited

Thermal neutron flux from ${}^{50}Cr(n,\gamma){}^{51}Cr$ Epithermal/fast flux from ${}^{27}Al(n,\alpha){}^{24}Na$

 $^{176}\text{Lu}(n,\gamma)^{177}\text{Lu}$ energy-dependent cross-section

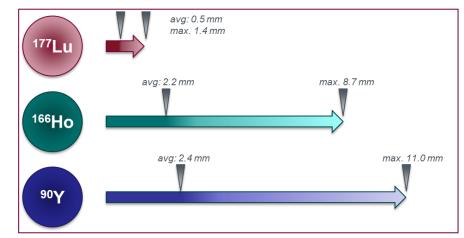


Whiteboarding No Carrier Added Lu-177 at McMaster

Reflecting on chromatography-based process (March 2020)

- Ideal process characteristics
 - 1 gram target (with potential for scale-up)
 - Minimal waste
 - Easy-to-recycle target

- All components readily available
- Potential for automation/standardization (GMP)
- Deployable at other sites



Recent Releases & In the Pipeline

Therapeutics for "personalized medicine"

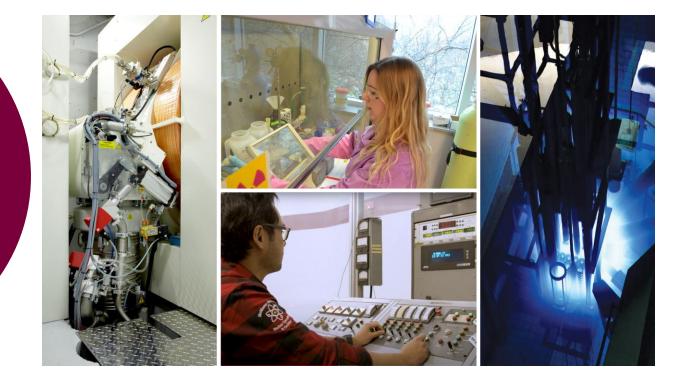
- n.c.a. Lu-177 distributing since Fall 2021
 - $_{\circ}$ ¹⁷⁶Yb(n,γ)¹⁷⁷Yb → ¹⁷⁷Lu
 - Proprietary method compatible with medium-flux reactors
 - Meets industry-standard specifications
 - Automation in progress (NSERC I2I)
- n.c.a. Ho-166 distributing July 2022
 - $_{\circ}$ ¹⁶⁴Dy(n,γ)¹⁶⁵Dy(n,γ)¹⁶⁶Dy → ¹⁶⁶Ho
 - Low pressure chromatography
- n.c.a. Y-90 generator design validated (⁹⁰Sr/⁹⁰Y)
 - Costing assessment for materials, equipment
 - Goal: 1 mCi generator by 2023

Tripositive therapeutics: beta range in tissue (to scale)

Summary & Conclusions

MNR: Canada's sole source of neutron-rich isotopes, on-demand

- Radioisotopes: treating cancer since 1901!
- New technologies, and new applications of old technology
 - LDR brachytherapy (new populations)
 - Imageable radioembolics (clinical trials beyond liver cancer)
 - Receptor-targeted drugs ("renaissance in radiopharmaceuticals")
 - Paired with diagnostic imaging agents
- Ensuring that researchers have early access to next-generation radioisotopes is essential to building & maintaining a culture of innovation in the radiopharmaceutical space


July 18, 2022 |

23

Thank-you for your attention.

Andrea Armstrong armst@mcmaster.ca

BRIGHTER WORLD | mcmaster.ca