

Nuclear Physics

Overview

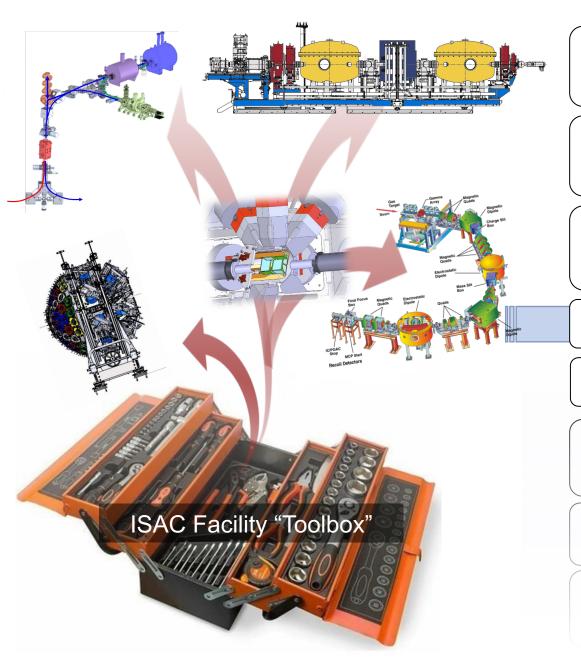
TRIUMF Science Week 2022

Chris Ruiz

Nuclear Physics Dept | Physical Sciences Division

Session Intro

1100		
14:00	TRIUMF / Zoom	13:15 - 14:15
	Coffee Break	
	TRIUMF / Zoom	14:15 - 14:30
	Nuclear Physics overview	Chris Ruiz
	TRIUMF / Zoom	14:30 - 14:45
	Nuclear Theory at TRIUMF	Jason Holt
	TRIUMF / Zoom	14:45 - 15:00
15:00	Sub-keV Decay Recoil Spectroscopy with Superconducting Quantum Sensors	Kyle Leach
	TRIUMF / Zoom	15:00 - 15:15
	The TRIUMF Storage Ring Project	Iris Dillmann
	TRIUMF / Zoom	15:15 - 15:30
	Polarized Beams at TRIUMF	Adam Garnsworthy
	TRIUMF / Zoom	15:30 - 15:45
	Break	
	TRIUMF / Zoom	15:45 - 16:00



Outline

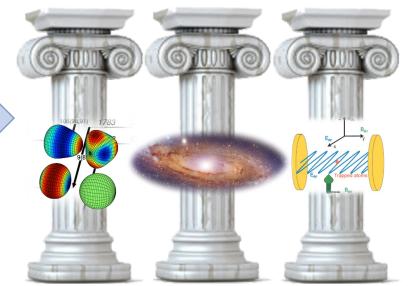
- Nuclear Physics using ISAC now
- Meeting the Challenge of ARIEL
 - How ARIEL will change landscape & what we'll need to get there
- Staying on the cutting edge, New Directions

Nuclear Physics @ ISAC: World Leading Capabilities

Nuclear ground state & decay properties via decay spectroscopy

Charged-particleinduced reaction cross section measurement

Decay spectroscopy of reaction-induced excited states in exotic systems


Ground state mass measurement

Precise decay spectral shapes

Preparation & measurement of quantum states via lasers / traps

Neutron-induced reaction cross section measurement

Radioactive molecule production Nuclear Nuclear Precise Tests
Structure Astrophysics of
Fundamental
Interactions

Orthogonality between most Facilities

→ Powerful Combinations Possible

- Add new tools
- Sharpen existing tools

TRINAT

Precise, kinematically-complete measurements of betadecay and associated parameters. Sensitive to time-

reversal symmetry violation.

TITAN

Multi-instrument ion trap facility for masses & decay spectroscopy: MRTOF, MPET, EBIT: precision or

coverage

FRANCIUM

Laser prepared Francium atoms probed towards Atomic

Parity Violating signal

GRIFFIN / DESCANT Decay spectrometer for gammas, betas, conversion

electrons, neutrons

Polarizer / Laser-spec

Collinear probing of spin polarized isotopes for e.g.

charge radii

DRAGON

Direct measurement of radiative proton & alpha capture

reactions on exotic or stable isotopes

SONIK

Precision elastic scattering on radioactive nuclei \rightarrow low

energy scattering phase shifts

TUDA

Versatile direct & indirect charged particle reaction facility

based around silicon arrays

DSL

Doppler-shift lifetime facility for determination of excited

state lifetimes

IRIS

Solid hydrogen or deuterium target scattering facility

using CsI & Silicon arrays → extracting structure information from reactions using weak exotic beams

TIGRESS

Gamma-ray spectroscopy of excited exotic reaction

residues using escape-suppressed HPGe array

EMMA

Recoil Spectrometer for detection & analysis of exotic

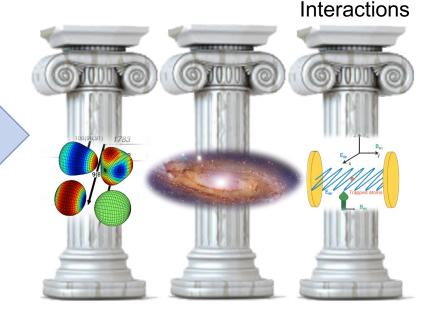
reaction residues

Nuclear ground state & decay properties via decay spectroscopy

Charged-particleinduced reaction cross section measurement

Decay spectroscopy of reaction-induced excited states in exotic systems

Ground state mass measurement


Precise decay spectral shapes

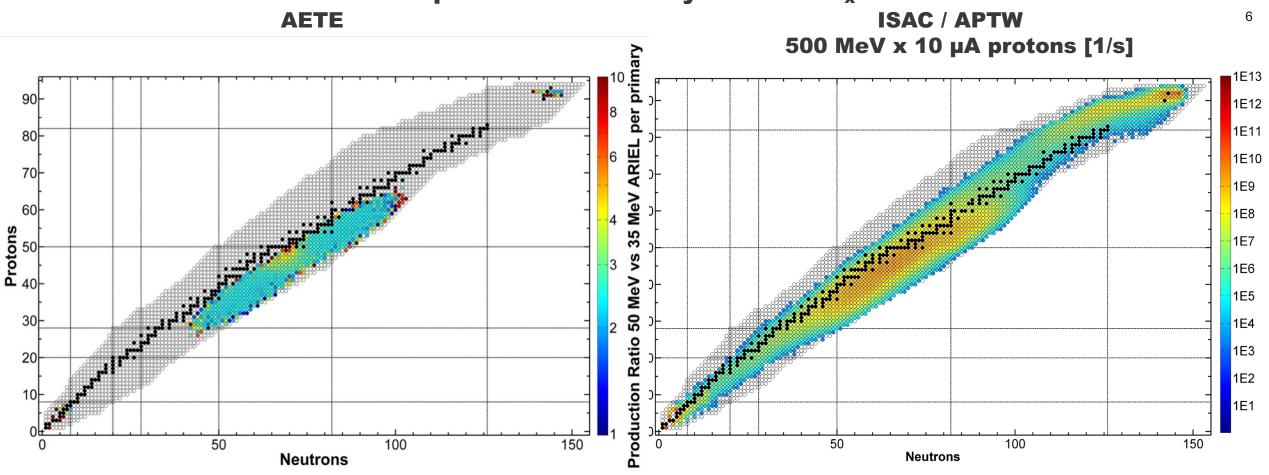
Preparation & measurement of quantum states via lasers / traps

Neutron-induced reaction cross section measurement

Radioactive molecule production Nuclear Structure Nuclear Precise Tests Astrophysics of

of Fundamental

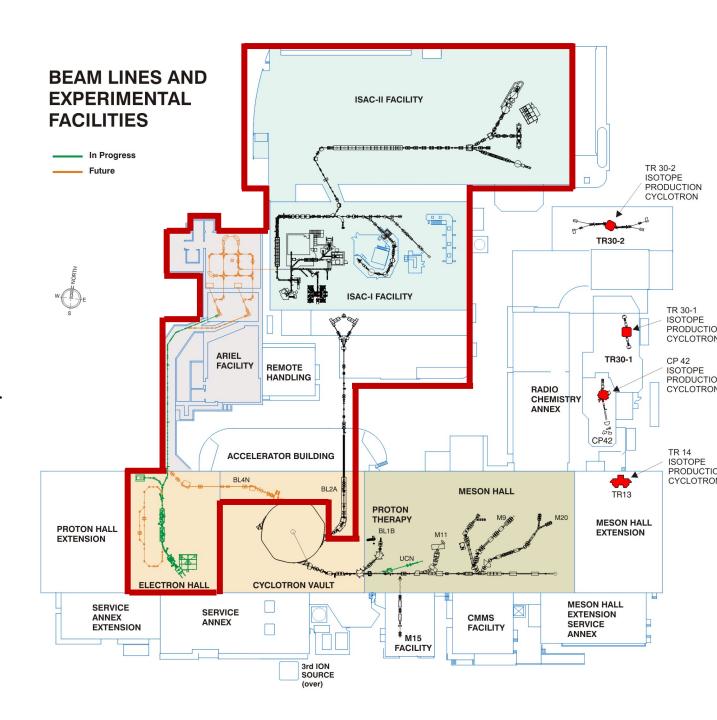
Orthogonality between most Facilities


→ Powerful Combinations Possible

- Add new tools
- Sharpen existing tools

5

ARIEL: how it will affect the landscape


- Pure n-rich products from photofission
- Operational flexibility

- High production intensities
- New development opportunities in APTW design

ARIEL Advantages (short term during ramp up starting 2026)

- Second proton target station and parallel beam delivery capabilities
- Significantly more targets, ion sources and beam development capabilities
- ➢ Independent driver beams
 → (potentially longer RIB schedules from the e-linac, less downtime, physics program when cyclotron is down for longer repairs or refurbishments)
- Possibilities of long beam times with "easy" n-rich isotopes while one or two exotic and demanding beams are delivered from the other two other stations.

ARIEL Beam Schedule will be: "Factory Mode" (more predictability, flexibility, opportunity)

- More of intense, cleaner, neutron-rich beams
 - Though not with same reach as FRIB (further towards drip-line), higher intensity a few isotopes lighter enables different class of experiments less "first glimpse", more precision and detail
- 3 independent RIB delivery paths one accelerated, two low-energy
 - In principle, 3x number of RIB shifts per year
 - \rightarrow With experimental community's capacity, this will result in 1x<experiments<3x \rightarrow publications
 - Ability to de-couple beam development from delivery → more new species delivered on a shorter timescale → More flexible & impactful experiments
 - Longer beamtimes (both n-rich, n-deficient) → greater sensitivity, e.g long precision measurements
 of small cross-section (e.g. astrophysics), more detailed surveys (multiple states probed in single
 run), long fundamental symmetries measurements
 - Greater standard of measurement in terms of coverage and/or precision

What we'll need to get there

- Facilities maintained at a competitive cutting edge, with full coverage vis-à-vis capabilities
 & techniques
- New directions to capture the ARIEL advantage
- Greater collaboration between groups/facilities
- More versatile, modular & portable ancillary equipment

Recall: by 2027, ramp up to 2-3x experiments running during year (+ New User Involvement!).

There will not necessarily be 2-3x postdocs & students

→ greater burden on local BAEs, techs & P&S physicists!

Need to keep our technical group adequately staffed & equipped

Sharpening the Tools: Decay Spectroscopy at GRIFFIN

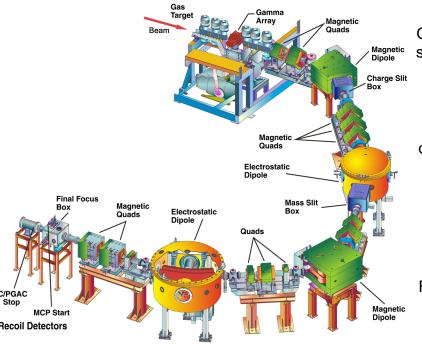
Wide-ranging and active science program in nuclear structure, nuclear astrophysics and fundamental symmetries → New n-rich isotopes, higher yields, cleaner beams from ARIEL


New upgrades will ensure a competitive edge over worldwide competition + enable new science opportunities:

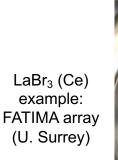
- Upgrade SCEPTAR beta-tagging array to ARIES.
- Upgrade PACES conversion electron spectrometer to CEDAR.
- New "RCMP" detector → charged-particle spectroscopy (eg. β-delayed proton and alpha)

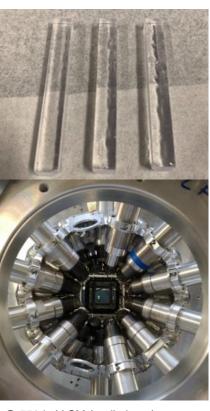
"Everything except the neutrino!"

New Initiative: Couple GRIFFIN to the polarizer beamline (see talk by Adam Garnsworthy)


CEDAR

RCMP

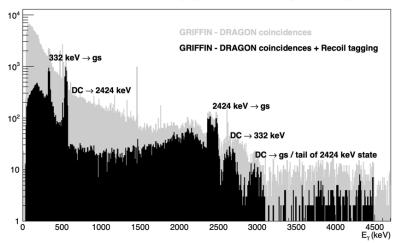

(U. Regina)


Sharpening the Tools: Nuclear Astrophysics at medium energies (DRAGON, TUDA and ancillaries)

- Long RIB runs → statistics, systematics, coverage, completeness
 - → Many excited states measured in single run "Doing it right"
- High intensity stable beam experiments with RF-booster cavity
 - → Direct capture, low cross-section → weakly bound halo states, astrophysics
- New detectors: use of GRIFFIN HPGe, Surrey LaBr₃ array, neutron detection at target for (α, n) (Organic Glass scintillators)
 - → Eventual development of replacement array for BGO (LYSO, Ce:GAGG) for highefficiency + ultra-fast timing
- Competitive or unique world-standard direct measurements of radiative capture, (p,α), (α,p)
 + elastic scattering, c.f. FRIB

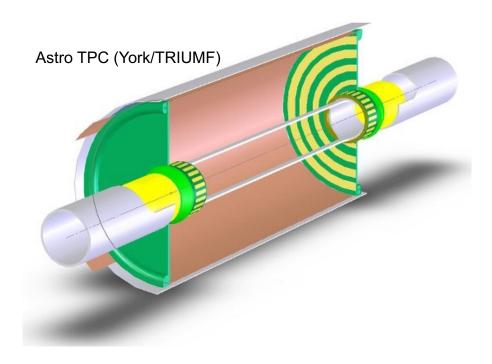


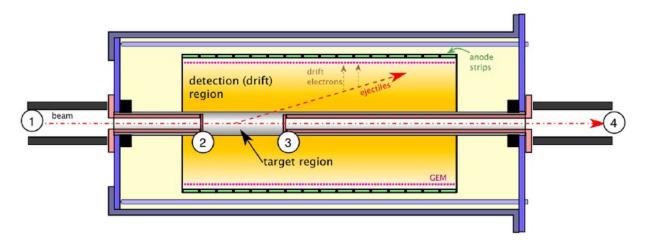
Melt-cast
Organic Glass
scintillators for
neutron
detection &
(n/γ) pulse
shape
discrimination



GRIFFIN Clovers @ DRAGON

S1880 (all runs) - ²⁰Ne(p,γ) @ 550 keV CM (preliminary)

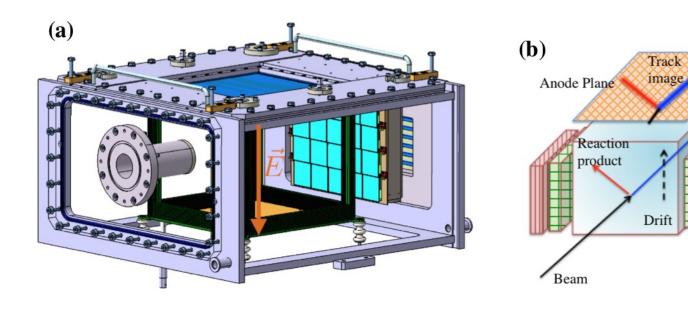



New Tools: Nuclear Astrophysics at medium energies

- TPC for v. low cross section / high beam intensity
 - \rightarrow V. low energy astrophysics measurements e.g. (p,α) , (α,p) , (α,n) for light nuclei e.g. Big Bang Nucleosynthesis, CNO etc

Modified version for heavy mass

- → Co-axial separated design (beam doesn't overwhelm particles of interest)
- → New flexible UrWELL GEM technology
- → Future flexible silicon detectors
- → Suitability of UrWELL GEMs with ³He gas, for neutron detection is also being explored
- Combination with external neutron array (OGS)

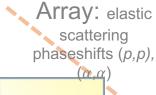

Added to existing facilities ->
Complete "direct measurement toolkit section"

New Tools: Nuclear Reaction Spectroscopy with Active Target Time-Projection Chamber

Active target, allowing for ⁴He or ³He targets "**EXACT TPC**"

Designed to operate simultaneously with IRIS facility (in transmission mode)

Can be combined with ancillary detectors (e.g. neutron array)


External

Detectors

- \rightarrow With ARIEL, can measure 136,137 Sn(α,α') to search for resonances just above *n* threshold
- → Ideal tool to search for isoscalar giant monopole resonance as well
- Complementary to IRIS facility transfer reactions (d,p) (p,d) (d,t) to get knowledge of neutron orbitals, EXACT e.g. allows for (3 He,d) for proton orbitals to looks for changes in nuclear shells in heavy nuclei
- Two nucleon transfer for pairing correlations using (³He,*p*) to study proton-neutron pairing in nuclei. e.g. ⁷⁶Sr(³He,*p*) to investigate T=0 pair vibration mode
- Bonus astrophysics motivation: rp, r-process → Indirect measurements for proton capture in ²³Al; ³⁵K, ⁵⁹Cu, ⁶¹Ga
 - → Thick target to measure excitation spectrum across various energies for resonant capture reactions

isotones)

AGON

Recoil Detectors

SONIK

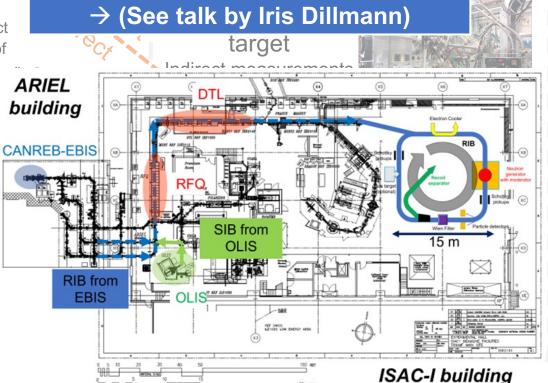
MR-TOF: ground-state masses 1st order parameter for r-process),

in-trap decay speg

TUDA Array:

measurement of $(p,\alpha), (\alpha,p)$

Neutron-induced reaction cross section


Active Target: direct measurement of

GRIFFIN Spectron measurement of ground-s

measurement properties: β +, β -, EC, e⁺e⁺, ρ - η , $\iota_{1/2}$

Radiative neutron-capture on *n*-rich species, within *i*process & r-process, is one of the biggest open fields of study in astrophysics: Binary neutron star mergers, corecollapse supernovae, CEMP stars → nucleosynthesis of the heaviest elements!

→ Neutron capture Storage Ring

"TRISR"

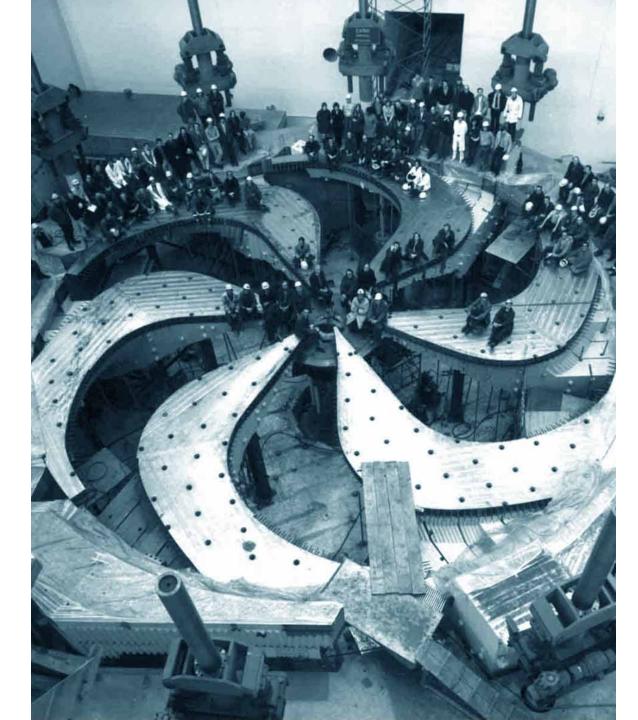
TIGRESS & Ancillary

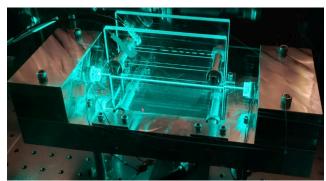
Detectors:

Eucian avaparation transfor

Thank you Merci

www.triumf.ca

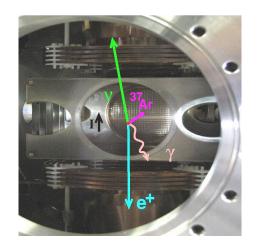

Follow us @TRIUMFLab



17

→ Precision RIB Measurements / Fundamental Symmetries

Francium PNC Facility (Fr-PNC)


- Currently at level of E1/M1 Stark transition measurement
 → Sensitivity & methodology proven
- Atomic Parity-violating signal expected 2024
- APV measurement competitive with others, 2025+ (into 5YP)
 - Competitive electron-quark neutral weak coupling + nuclear anapole
- These measurements need maximum yields of ²⁰⁸⁻²¹³Fr → n-dependent effects
- D. DeMille et al. have S2139LOI which would look for Francium dimers at Fr-PNC, towards full ²²³FrAg EDM experiment (see AMO discussion)

FRANCIUM UHV Power Buildup Cavity (T. Hucko, ACOT 2021)

TRINAT (neutral atom trap) \rightarrow TRINAT- γ

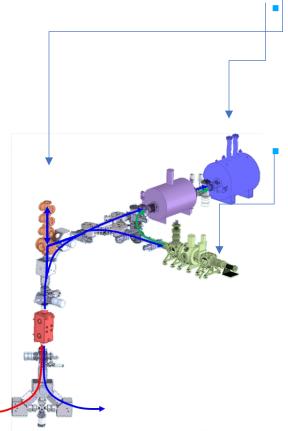
- Extend β-ν-γ from T-reversal symmetry breaking in ³⁷K (expected finished in current 5YP)
- Consider isospin symmetry-breaking in isospinsuppressed Fermi-GT ^{36,45,47}K for V_{ud}
- Develop case for time-reversal enhancement by isospin-suppressed F-GT → competitive search for Time-breaking, Parity-even isospin-breaking nucleonnucleon interactions

TRINAT Trap

TRINAT Needs:

- Digitization of waveforms for ion & beta counters
- Cryo vacuum upgrade
- Gradually longer beam times towards long blocks for precision measurements (stat √N + systematic tests) in 5YP

TITAN Ion Trap Facility

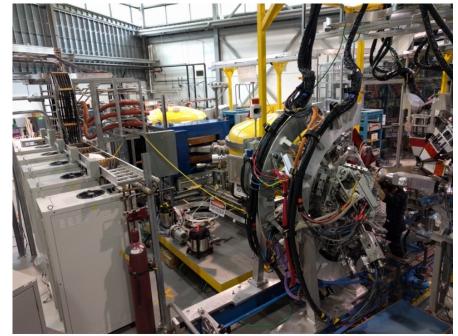

MR-TOF: 10 year + program of measuring r-process nuclei for astrophysics (masses), plus instrument of standard for measuring low intensities from ARIEL

MPET (Penning Trap): Precision mass measurements, v. high precision (1:1E+10) of heavy superallowed β -emitters \rightarrow V_{ud}

- Long runs ~1 week/isotope
- More systematics controlled

EBIT (highly-charged ions) [5-10 year program]

- In-trap decay spectroscopy: nuclear structure & astro ~ 2week runs
- Extreme UV spectroscopy → absolute charge radii of heavies (e.g. Fr, Ra) for EDMs
- Highly-charged radioactive molecules: establishing existence
 → RadMol facility



→ Pioneering & precision RIB Measurements / Nuclear Structure and Astrophysics

TIGRESS and EMMA

Nuclear structure frontiers with RIBs:

- Isospin: Exoticism, new magic numbers, indications of collectivity, ground states and small number of excited states
- Precision & Sensitivity: nature of shapes and shape coexistence, microscopic origin of magic numbers, collectivity, rich excited structures and transitions
- Precision requires high efficiency and high RIB flux (intensity and time): highly efficient Ge detectors + recently upgraded GRIFFIN-style DAQ for ~30× the data throughput
- CANREB and ARIEL will push the frontiers of precision and sensitivity:
 - cleaner beams with lower isobaric contamination (esp. of fission products) & higher mass resolution lead to sensitivity; especially relevant for higher-mass fission peak largely unexplored by TIGRESS so far;
 - longer beam times and higher intensities will permit precise measurements
 - Sensitivity requires a suite of auxiliary detectors and *clean* RIBs; coupling to EMMA greatly enhances sensitivity
 - EMMA enhancements: direct measurements of reaction cross sections at supernova energies: solid He targets and neutron detectors will enable (α,n) in addition to (p,γ) and (α,p)
 - Nuclear structure: 4 GRIFFIN HPGe detectors to be located near EMMA focal plane surrounding DSSD for decay spectroscopy of reaction products
 - Addition of annular Si in SHARC-II target chamber for Δ E-E measurements of light ejectiles to reduce fusion-evaporation background in α transfer reactions, enhance sensitivity for (3 He,d) reactions

TIGRESS coupled to the EMMA recoil spectrometer target position

19