% TRIUMF

Nuclear Theory at TRIUMF

Jason D. Holt Scientist, Theory Department Science Week July 20, 2022

Discovery, accelerated

TRIUMF Nuclear Theory

- First principles or ab initio nuclear theory
 - Input NN+3N interactions from chiral EFT
 - Solving many-nucleon Schrodinger equation
 - Quantum many-body problem
 - Ultimately connecting to nuclear astrophysics
- Unique to TRIUMF nuclear theory:
 - Unified approach to nuclear structure and reactions for light nuclei: No-Core Shell Model with Continuum (NCSMC)
 - Powerful valence-space method for medium mass nuclei: Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)
- Large-scale high-performance computation
 - Massively parallel codes
 - Summit@ORNL, Quartz@Livermore Computing, Cedar@Compute Canada

Ab initio nuclear theory at TRIUMF Theory Department

- Unified approach to nuclear structure and reactions for light nuclei: No-Core Shell Model with Continuum (NCSMC)
 - Applications to

- Properties of exotic nuclei prediction of near threshold S-wave resonance in ⁶He+p \rightarrow TUDA experiment
- Nuclear reactions important for astrophysics ${}^{7}Be(p,\gamma){}^{8}B$, ${}^{11}C(p,\gamma){}^{12}N$ \rightarrow DRAGON experiments
- Tests of fundam decays). β -dec
- Properties of chiral three-
- Large-scale high-performance computation massively parallel codes
 - Summit@ORNL, Quartz@Livermore Computing, Cedar & Niagara@Compute Canada
- Synergy with ISAC RIB experiments
- Petr Navratil + 2 PhD students + 1.5 postdocs (+ co-op students)

To be measured at TRIS

, nental symmetries – C ay electron spectra, a	K№ naj	1 ur oloc	nitarity t e mome	ests (superallo ents, nuclear E	owed β- DM	
nucleon interaction	<u> </u>					
	π	π	\prod_{π}			

118, 262502 (2017)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 30 JUNE 201
	(j) J	
Nuclear Force In	prints Revealed on the Elastic Scattering of Prot	ons with ¹⁰ C
 A. Kumar,¹ R. Kanungo,^{1*} B. Davids,² J. Dohet-Eral, R. Krücken,^{2,8} A. T. I A. Roias ² B 	A. Calci, ² P. Navrátil, ^{2†} A. Sanetullaev, ^{1,2} M. Alcorta, ² V. Bilc y, ^{2,4} J. Fallis, ² A. T. Gallant, ² G. Hackman, ² B. Hadinia, ³ G. H. affoley, ³ J. Lighthall, ³ D. Miller, ² S. Quaglioni, ⁹ J. S. Randhav P. Roth ¹⁰ A. Shotter ¹¹ I. Tawaka ¹² I. Tawaka ¹² and C. Im.	lstein, ³ G. Christian, ² upin, ^{5,6} S. Ishimoto, ⁷ wa, ¹ E. T. Rand, ³

	Physics Letters B 822 (2021) 136710	
4320300	Contents lists available at ScienceDirect	PHYSICS LETTERS IN
2.52	Physics Letters B	
FLSEVIER	www.elsevier.com/locate/physletb	

Proton inelastic scattering reveals deformation in ⁸He

Holm, K. Raimago, J. E. J. Duni, G. Inagein, J.D. Kabi, S. K. Kutoka, J. Ravitali, J. Papenbrock, C. ⁴ , M. Alcorta, D. Connolly, B. Davids ^b , A. Diaz Varela ⁸ , M. Gennari ⁵ , Hackman ⁵ , J. Henderson ⁵ , S. Ishimoto ⁵ , A.I. Kille ⁸ , R. Krücken ⁵ , A. Lennarz ^{b,1} , J. Liang ¹ , Measures ¹ , W. Mittig ^{1,1} , O. Paetkau ⁵ , A. Psaltis ¹ , S. Quaglioni ¹¹⁰ , J.S. Randhawa ⁸ , Smallcombe ⁶ , I. I. Thompson ¹⁰ , M. Vorabis ^{1,6} , M. Williams ^{1,6} .
Smallcombe [®] , I.J. Thompson ^m , M. Vorabbi ^{®,n} , M. Williams ^{®,0}

	Contents lists available at ScienceDirect	Protect of
24	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	
Reorientation-effec Confirmation of ob	ct measurement of the first 2 ⁺ state in ¹² C: plate deformation	Chuck for updates
Reorientation-effec Confirmation of ol: M. Kumar Raju ^{a,b,1} , J.N.	ct measurement of the first 2 ⁺ state in ¹² C: olate deformation . Orce ^{3,*} , P. Navrátil ^c , G.C. Ball ^c , T.E. Drake ^d , S. Triambak ^{4,b} ,	Check for Spheles
Reorientation-effec Confirmation of ob M. Kumar Raju ^{a,b,1} , J.N G. Hackman ^C , C.J. Pears D.S. Cross ^C , M.K. Djong	ct measurement of the first 2 ⁺ state in ¹² C: blate deformation . Orce ^{3,*} , P. Navrátil ^c , G.C. Ball ^c , T.E. Drake ⁴ , S. Triambak ^{4,b} , on ^c , KJ. Abrahams ⁴ , E.H. Akakpo ⁵ , H. Al Falou ^c , R. Churchman ^{c,2} , Joor ^c , N. Fasarus ⁴ , P. Finlay, A.B. Garnsvorthy ⁷ , P.E. Garret ¹ ,	Check for spokes
Reorientation-effec Confirmation of ob M. Kumar Raju ^{a,b,1} , J.N. G. Hackman ⁵ , C.J. Pears D.S. Cross ⁶ , M.K. Djong D.G. Jenkins ⁸ , R. Kshetr M. L. Makrabhethe ⁸ , C.	ct measurement of the first 2 ⁺ state in ¹² C: blate deformation . Orce ^{3,*} , P. Navrátil ^c , G.C. Ball ^c , T.E. Drake ⁴ , S. Triambak ^{4,b} , on ^c , K.J. Abrahams ⁴ , E.H. Akakpo ⁵ , H. Al Falou ^c , R. Churchman ^{c,2} , Jou ^c , N. Fasanus ⁴ , P. Finlay, A.B. Garnsworthy ⁷ , P.E. Garret ¹ , ¹⁵⁻⁰ , K.G. Leach ⁷ , S. Masango ⁴ , D.L. Mavela ⁴ , C.V. Mehl ⁴ , ¹⁵⁻⁰ , K.G. C. C. O'Neil ² ET Papel ⁶ , S.K. Sine ⁶	Check for sphiles

PHYSICAL REVIEW LETTERS 120, 062503 (2018)

Dawning of the N = 32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

E. Leistenschneider,^{1,2,*} M. P. Reiter,^{1,3} S. Ayet San Andrés,^{3,4} B. Kootte,^{1,5} J. D. Holt,¹ P. Navrátil,¹ C. Babcock, C. Barbieri,⁶ B. R. Barquest,¹ J. Bergmann,³ J. Bollig,^{1,7} T. Brunner,^{1,8} E. Dunling,^{1,9} A. Finlay,^{1,2} H. Geissel,^{3,4} L. Graham F. Greiner,³ H. Hergert,¹⁰ C. Hornung,³ C. Jesch,³ R. Klawitter,^{1,11} Y. Lan,^{1,2} D. Lascar,^{1,+} K. G. Leach,¹² W. Lippert J. E. McKay,^{1,13} S. F. Paul,^{1,7} A. Schwenk,^{11,14,15} D. Short,^{1,16} J. Simonis,¹⁷ V. Somà,¹⁸ R. Steinbrügge,¹ S. R. Stroberg, R. Thompson,²⁰ M. E. Wieser,²⁰ C. Will,³ M. Yavor,²¹ C. Andreoiu,¹⁶ T. Dickel,^{3,4} I. Dillmann,^{1,13} G. Gwinner W. R. Plaß,^{3,4} C. Scheidenberger,^{3,4} A. A. Kwiatkowski,^{1,13} and J. Dilling¹

	PHYSICAL REVIEW C 103, 035801 (2021)	PHYSICAL REVIEW C 105, 054316 (2022)
	Minnegenie investigation of the St i/m as St i mention	
	Microscopic investigation of the Ed(n, y) Enfection	
	Callum McCracken © TRUMF, 4004 Westown Bull, Wacowner Striik Columbia V6T 2A3, Canada and University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada	Ab initio calculation of the β decay from ¹¹ Be to a ¹⁰ Be + p resonance
R?	Petr Navrátil 0 ¹ and Anna McCoy ¹ TRIUMF, 4004 Weshrook Mall, Vancouver, British Columbia V67 2A3, Canada	
	Sofia Quaglionii ¹ Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA	M. C. Atkinson [®] , ¹ P. Navrátil [®] , ¹ G. Hupin [®] , ² K. Kravvaris, ³ and S. Quaglioni ³
	Guillaume Hupin®! Université Paris-Saclay: CNRS/INZP3. UCLab. 91405 Ornay: France	

PRL

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance (TRIUMF experiment by Ayyad *et al.*, Phys. Rev. Lett. 123, 082501 (2019))

Ab initio calculations of radiative capture reactions important for astrophysics

arXiv: 2202.11759

2.5

Precision Mass Measurements of Neutron-Rich Scandium Isotopes Refine the Evolution of N=32 and N=34 Shell Closures

E. Leistenschneider, E. Dunling, G. Bollen, B. A. Brown, J. Dilling, A. Hamaker, J. D. Holt, A. Jacobs, A. A. Kwiatkowski, T. Miyagi, W. S. Porter, D. Puentes, M. Redshaw, M. P. Reiter, R. Ringle, R. Sandler, C. S. Sumithrarachchi, A. A. Valverde, and I. T. Yandow (The LEBIT Collaboration and the TITAN Collaboration) Phys. Rev. Lett. **126**, 042501 – Published 26 January 2021

Ab initio nuclear theory at TRIUMF Theory Department

- Novel approach to calculate essentially all open-shell medium/heavy mass nuclei: Valence-Space in-medium similarity renormalization group (VS-IMSRG)
 - Applications to
 - Exotic nuclei: nuclear driplines, continuum, shell structure, r-process
 - BSM Physics: 0νββ decay, dark matter detection, neutrino scattering
 - Fundamental symmetries: CKM unitarity, anapole moments, EDM
- Properties to constrain nuclear EOS: neutron skin and dipole polarizability in ²⁰⁸Pb
- Extension to atomic systems in progress, e.g., for laser spectroscopy
- Large-scale high-performance computation: Cedar@Compute Canada
- Synergy with ISAC and worldwide RIB experiments + Art McDonald Institute/SNOLAB
- Jason D. Holt + 2 PhD students + 2 MSc student + 2 postdocs (+ many co-op students)

Featured in Physics Editors' Suggestion

Ab Initio Limits of Atomic Nuclei

S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis Phys. Rev. Lett. **126**, 022501 – Published 12 January 2021

PhySICS See synopsis: Predicting the Limits of Atomic Nuclei

Ab Initio Structure Factors for Spin-Dependent Dark Matter Direct Detection

B. S. Hu, J. Padua-Argüelles, S. Leutheusser, T. Miyagi, S. R. Stroberg, and J. D. Holt Phys. Rev. Lett. **128**, 072502 – Published 17 February 2022

Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ${}^{48}Ca$, ${}^{76}Ge$, and ${}^{82}Se$

A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D. Holt Phys. Rev. Lett. **126**, 042502 – Published 29 January 2021

6

Dawning of the N=32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes

E. Leistenschneider, ^{1,2,*} M. P. Reiter, ^{1,3} S. Ayet San Andrés, ^{3,4} B. Kootte, ^{1,5} J. D. Holt, ¹ P. Navrátil, ¹ C. Babcock, ¹
 C. Barbieri, ⁶ B. R. Barquest, ¹ J. Bergmann, ³ J. Bollig, ^{1,7} T. Brunner, ¹ E. Dunling, ^{1,9} A. Finlay, ^{1,2} H. Geissel, ^{3,4} L. Graham, ¹
 F. Greiner, ³ H. Hergert, ¹⁰ C. Hornung, ³ C. Jesch, ³ R. Klawitter, ^{1,11} Y. Lan, ^{1,2} D. Lacart, ^{1,7} K. G. Leach, ^{1,2} W. Lippert, ³
 J. E. McKay, ^{1,13} S. F. Paul, ^{1,7} A. Schwenk, ^{11,14,15} D. Short, ^{1,16} J. Simonis, ¹⁷ V. Somà, ¹⁸ R. Steinbrügge, ¹ S. R. Stroberg, ^{1,19}
 R. Thompson, ²⁰ M. E. Wieser, ²⁰ C. Will, ³ M. Yavor, ²¹ C. Andreoiu, ¹⁶ T. Dickel, ^{3,4} I. Dillmann, ^{1,13} G. Gwinner, ⁵
 W. R. Plaß, ^{3,4} C. Scheidenberger, ^{3,4} A. A. Kwiatkowski, ^{1,13} and J. Dilling^{1,2}

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of ²²Mg

J. Henderson^{a,b,*}, G. Hackman^a, P. Ruotsalainen^c, S.R. Stroberg^{a,1}, K.D. Launey^d, J.D. Holt^a, F.A. Ali ^{c,f}, N. Bernier^{a,8}, M.A. Bentley^h, M. Bowry^a, R. Caballero-Folch^a, L.J. Evitts^{a,i}, R. Frederick^a, A.B. Garnsworthy^a, P.E. Garrett^f, B. Jigmeddorj^f, A.I. Kilic^f, J. Lassen^a, J. Measures^{a,i}, D. Muecher^f, B. Olaizola^{a,i}, E. O'Sullivan^a, O. Paetkau^a, J. Park^{a,g,2}, J. Smallcombe^a, C.E. Svensson^f, R. Wadsworth^h, C.Y. Wu^b

	Contents lists available at ScienceDirect	PHYSICS LETTERS 8
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	

Identification of significant *E*0 strength in the $2^+_2 \rightarrow 2^+_1$ transitions of 58,60,62 Ni

```
LJ. Evitts <sup>a,b</sup>, A.B. Garnsworthy <sup>a,*</sup>, T. Kibédi <sup>c</sup>, J. Smallcombe <sup>a</sup>, M.W. Reed <sup>c</sup>, B.A. Brown <sup>e,f</sup>,
A.E. Stuchbery <sup>c</sup>, G.J. Lane <sup>c</sup>, T.K. Eriksen <sup>c</sup>, A. Akber <sup>c</sup>, B. Alshahrani <sup>e,d</sup>, M. de Vries <sup>c</sup>,
M.S.M. Gerathy <sup>c</sup>, J.D. Holt <sup>a</sup>, B.Q. Lee <sup>c,1</sup>, B.P. McCormick <sup>c</sup>, A.J. Mitchell <sup>c</sup>,
M. Moukaddam <sup>a,2</sup>, S. Mukhopadhyay <sup>g</sup>, N. Palalani <sup>c</sup>, T. Palazzo <sup>c</sup>, E.E. Peters <sup>g</sup>,
A.P.D. Ramirez <sup>g</sup>, S.R. Stroberg <sup>a,3</sup>, T. Tornyi <sup>c</sup>, S.W. Yates <sup>g</sup>
```

Ab initio nuclear theory at TRIUMF Theory Department

- Novel approach to calculate **essentially all open-shell medium/heavy mass nuclei**: Valence-Space in-medium similarity renormalization group (VS-IMSRG)
 - Applications to
 - Exotic nuclei: nuclear driplines, continuum, shell structure, r-process
 - BSM Physics: $0\nu\beta\beta$ decay, dark matter detection, neutrino scattering
 - Fundamental symmetries: CKM unitarity, anapole moments, EDM
- Properties to constrain nuclear EOS: neutron skin and dipole polarizability in ²⁰⁸Pb
- Extension to atomic systems in progress, e.g., for laser spectroscopy
- Large-scale high-performance computation: Cedar@Compute Canada
- Synergy with ISAC and worldwide RIB experiments + Art McDonald Institute/SNOLAB
- LETTERS Jason D. Holt + 2 PhD students + 2 MSc student + 2 postdocs (+ many co-op students)

Ab Initio Limits of Atomic Nuclei

S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis Phys. Rev. Lett. 126, 022501 - Published 12 January 2021

Physics See synopsis: Predicting the Limits of Atomic Nuclei

Ab Initio Structure Factors for Spin-Dependent Dark Matter Direct Detection

B. S. Hu, J. Padua-Argüelles, S. Leutheusser, T. Miyagi, S. R. Stroberg, and J. D. Holt Phys. Rev. Lett. 128, 072502 - Published 17 February 2022

Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ⁴⁸Ca. ⁷⁶Ge, and ⁸²Se

A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D. Holt Phys. Rev. Lett. 126, 042502 - Published 29 January 2021

⁷⁸Ni revealed as a doubly magic stronghold against nuclear deformation

https://doi.org/10.1038/s41586-019-1155-

R. Taniuchi^{1,2}, C. Santamaria^{2,3}, P. Doornenbal²*, A. Obertelli^{2,3,4}, K. Yoneda², G. Authelet³, H. Baba², D. Calvet³, F. Château³ A. Corsi³, A. Delbart³, J.-M. Gheller³, A. Gillibert³, J. D. Holt⁵, T. Isobe², V. Lapoux³, M. Matsushita⁶, J. Menéndez⁶ S. Momiyama^{1,2}, T. Motobayashi², M. Niikura¹, F. Nowacki⁷, K. Ogata^{8,9}, H. Otsu², T. Otsuka^{1,2,6}, C. Péron³, S. Péru¹ S. Moumyalia T. E. Moubayskii F. and Mukara A. K. Work & R. K. Ogala A. H. Oski and Oskika Singu-14. Simonis-2013. A Psyaral F. C. Pollacco¹, N. Yoves¹, I. J. K. Kouss⁴, H. Sakural¹, A. Schwarf, K. K. K. Kangu-14. Simonis-2013. S. R. Stroberg^{20,4}, S. Takeuchi², Y. Isunoda⁴, T. Leykara, H. Wang⁴, E. Browne¹¹, L. X. Chung⁶, Z. Dombrad¹⁰, S. Franchoo⁵⁰, F. Giacoppo⁹, A. Gottardo⁹, K. Hadyiska-Klęk², Z. Koltki¹⁰, S. Kowam¹³, Y. Kubota²¹, J. Lee²¹, M. Lettmann⁴, C. Louchart⁴, R. Lozeva^{21,21}, K. Matsu¹³, T. Miyzarak^{12,4}, S. Nishimura², L. Olivier⁹, S. Ora⁴, Z. Patel⁴¹, E. Sahn²⁰, C. Shand²⁴, P.-A. Söderström², I. Stefan⁹, D. Stepenbeck¹, T. Sumikama²⁴, D. Suzuk¹²⁰, Y. Vajta¹⁴, W. Werne⁴, J. Mu²⁵, & Z. X. M²²

nature	LETTERS
physics	https://doi.org/10.1038/s41567-021-01326-9
	Check for updat

OPFN

Mass measurements of ⁹⁹⁻¹⁰¹In challenge ab initio nuclear theory of the nuclide ¹⁰⁰Sn

M. Mougeot ^{1,2}^{IZ}, D. Atanasov ², J. Karthein ^{1,2,17}, R. N. Wolf ³, P. Ascher⁴, K. Blaum ¹, K. Chrysalidis ¹², G. Hagen ^{5,6}, J. D. Holt ^{10,78}, W. J. Huang ¹¹⁸, G. R. Jansen ¹⁰⁹, I. Kulikov ¹⁰, Yu. A. Litvinov 10 10, D. Lunney 10 11, V. Manea 10 211, T. Miyagi⁷, T. Papenbrock^{5,6}, L. Schweikhard¹² A. Schwenk ^{1,13,14}, T. Steinsberger¹, S. R. Stroberg ¹⁵, Z. H. Sun^{5,6}, A. Welker ², F. Wienholtz ^{2,12,13}, S. G. Wilkins^{®2} and K. Zuber¹⁶

Article

OPFN

Nuclear moments of indium isotopes reveal abrupt change at magic number 82

https://doi.org/10.1038/s41586-022-04818-7	A. R. Vernon ^{1,2,3} , R. F. Garcia Ruiz ^{2,4} , T. Miyagi ⁵ , C. L. Binnersley ¹ , J. Billowes ¹ , M. L. Bissell ¹ ,
Received: 10 June 2021	J. Bonnard ⁶ , T. E. Cocolios ³ , J. Dobaczewski ^{6,7} , G. J. Farooq-Smith ³ , K. T. Flanagan ¹⁸ ,
Acconted: 28 April 2022	G. Georgiev ³ , W. Gins ^{3,10} , R. P. de Groote ^{3,10} , R. Heinke ^{4,11} , J. D. Holt ^{3,12} , J. Hustings ³ , Á. Kostorús ³ D. Leimbach ^{11,13,14} K. M. Lynch ⁴ G. Novons ^{3,4} S. P. Stroborg ¹⁵ S. G. Wilkins ^{1,2}
	X. F. Yand ³¹⁶ & D. T. Yordanov ⁴⁹
Published online: 13 July 2022	
Check for updates	

Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes

R. P. de Groote D1,2 , J. Billowes³, C. L. Binnersley³, M. L. Bissell³, T. E. Cocolios D1, T. Day Goodacre ^{64,5}, G. J. Faroog-Smith ⁶¹, D. V. Fedorov ⁶⁶, K. T. Flanagan³, S. Franchoo⁷, R. F. Garcia Ruiz^{3,8,9}, W. Gins^{1,2}, J. D. Holt^{6,5,10}, Á. Koszorús¹, K. M. Lynch⁹, T. Miyagi⁵, W. Nazarewicz ¹⁰¹¹, G. Neyens^{1,9}, P.-G. Reinhard¹², S. Rothe ^{13,4}, H. H. Stroke¹³, A. R. Vernon^{1,3}, K. D. A. Wendt¹⁴, S. G. Wilkins^{13,4}, Z. Y. Xu¹ and X. F. Yang^{1,15}

∂TRIUMF

Dripline Predictions to Fe Isotopes

8

First predictions of proton and neutron driplines from first principles

Known drip lines largely predicted within uncertainties (artifacts at shell closures) Provide ab initio predictions for neutron-rich region

Ab initio calculations for heavy nuclei

- Challenge: Convergence with respect to the number of three-nucleon (3N) force matrix elements
- Breakthrough in storage achieved
- Opens possibilities for calculations of ¹³²Sn, ²⁰⁸Pb, ... superheavy isotopes?!?

Neutron Skin of ²⁰⁸Pb

TRIUMF/ORNL/Chalmers collaboration

REALE

Machine learning: calibrate on light nuclei (**green**) 10⁸ calculations spanning EFT parameter space

34 non-implausible NN+3N interactions (with uncertainties)

```
Validate for <sup>48</sup>Ca (blue) + <sup>208</sup>Pb predictions (pink)
E/A, 2<sup>+</sup>, radii, dipole polarizability
```

Final prediction for neutron skin with systematic uncertainty R_{skin}(²⁰⁸Pb) = 0.15-0.19 fm

Mild tension with new PREX measurement

B. Hu, W. Jiang, T. Miyagi, Z. Sun et al., Nature Phys. (in press)

TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of NN+3N forces
- Consistent inclusion of 2BC

Discrepancy between experimental and theoretical β -decay rates resolved from first principles

P.Gysbers^{1,2}, G.Hagen^{® 3,4*}, J.D.Holt[®]¹, G.R.Jansen^{® 3,5}, T.D.Morris^{3,4,6}, P.Navrátil[®]¹, T.Papenbrock^{® 3,4}, S.Quaglioni^{® 7}, A.Schwenk^{8,9,10}, S.R.Stroberg^{1,11,12} and K.A.Wendt⁷

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

TRIUMF

Solution g_A-Quenching Problem

12

Comparison to standard phenomenological shell model

Ab initio calculations across the chart explain data with unquenched g_A

Refine results with improvements in forces and many-body methods

Nuclear Astrophysics Theory

Letter

 Research program focuses on the origin of heavy elements with an emphasis on the impact of unknown nuclear physics on observables

R. Orford,^{1,2,3,*} N. Vassh,^{4,†} J. A. Clark,^{2,5} G. C. McLaughlin,⁶ M. R. Mumpower,⁷ D. Ray,^{2,5} G. Savard,^{2,8} R. Surman,⁴ F. Buchinger,¹ D. P. Burdette,^{2,4} M. T. Burkey,^{2,8,‡} D. A. Gorelov,^{2,5} J. W. Klimes,^{2,8} W. S. Porter,^{2,1} K. S. Sharma,⁵ A. A. Valverde,^{2,5} L. Varriano,^{2,8} and X. L. Yan^{2,9}
¹Department of Physics, McGill University, Montréal, Québec H3A 278, Canada
²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkleley, California 94720, USA
⁴Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
⁵Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
⁷Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
⁸Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
⁹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

PHYSICAL REVIEW C 105, L052802 (2022)

Searching for the origin of the rare-earth peak with precision mass measurements across Ce–Eu isotopic chains

(Received 28 September 2021; accepted 29 March 2022; published 18 May 2022)

A nuclear mass survey of rare-earth isotopes has been conducted with the Canadian Penning Trap mass spectrometer using the most neutron-rich nuclei thus far extracted from the CARIBU facility. We present a collection of 12 nuclear masses determined with a precision of $\leq 10 \text{ keV}/c^2$ for Z = 58-63 nuclei near N = 100. Independently, a detailed study exploring the role of nuclear masses in the formation of the *r*-process rare-earth abundance peak has been performed. Employing a Markov chain Monte Carlo (MCMC) technique, mass predictions of lanthanide isotopes have been made which uniquely reproduce the observed solar abundances near A = 164 under three distinct astrophysical outflow conditions. We demonstrate that the mass surface trends thus far mapped out by our measurements are most consistent with MCMC mass predictions given an *r* process that forms the rare-earth peak during an extended $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium.

1

*Statistical methods work motivated measurements which pushed to previously unknown neutron-rich lanthanide masses across several isotopic chains

DOI: 10.1103/PhysRevC.105.L052802

Nuclear Astrophysics Theory

- Research program focuses on the origin of heavy elements with an emphasis on the impact of unknown nuclear physics on observables
 - Statistical methods + rare-earth nuclei work ongoing (in prep work exploring impact of Solar data uncertainties; theory support for two accepted proposals at ANL to measure more n-rich rare-earth masses (ex ¹⁶⁴Nd))
 - Work on the impacts and signatures of fission in nucleosynthesis ongoing (in prep sensitivity study for neutroninduced fission; theory support for accepted Hubble Space Telescope proposal to measure abundances of possible fission products in metal-poor stars)
 - Work to use LIGO data to pin down heavy element origins and search for disfavored nuclear models ongoing (in prep work extending NSNS merger study to elements other than Eu, in prep work incorporating NSBH mergers)

Future directions and synergies with the TRIUMF team

- Interest in reducing nuclear data uncertainties near N=82 to pin down predicted shape of 2nd r-process peak (connection to TITAN capabilities)
- Interest in expanding program to other processes such as supernova nucleosynthesis and *i*-process (connections with DRAGON and future TRISR neutron storage ring)
- Interest in the strength of the N=126 shell closure to refine predictions for 3rd peak element (ex gold) production in NSMs (connection with ab initio nuclear theory (newly started N=126 project w/ J. Holt))
- Interest in dark matter and neutrino physics in explosive events such as NSMs and SN (connection with particle theorists (newly started dark neutron project w/ D. McKeen))

New initiatives: Establishment of Theory Centres

- Ab Initio Nuclear Theory Centre Strengthen TRIUMF nuclear ab initio program
 - Require additional nuclear theorist with associated postdoc position
 - Quantum many-body theory (in the future quantum computing?)
 - Intersection of nuclear and quantum chemistry ab initio theory
 - Increasing reach to heavy nuclei connection to r-process modeling, Radioactive Molecules
 - Increase synergy with ARIEL program and the newly proposed AMO/Precision/Quantum centre
 - Build on existing strength → bigger impact
- TRIUMF Workshop/Visitor/Education Centre
 - Model based on very successful centres such as the <u>Institute for Nuclear Theory (INT)</u>
 - Host multiple in-house workshop and collaboration programs year-round cover all lab topics!
 - Program proposals would be submitted externally and reviewed by an evaluation committee
 - True workshop format: office space for participants, 2-week timeline, limited presentations.
 - Allow extended student and scientist visits from member universities/expand outreach

Future of Theory @ TRIUMF: Unified first-principles approach to all nuclei ¹⁷

- Key recent/future applications in structure and reactions
 - Nuclear reactions important for astrophysics and fusion energy generation such as
 - ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}, {}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Li}, {}^{12}\text{C}(\alpha, \gamma){}^{16}\text{O}, {}^{13}\text{C}(\alpha, n){}^{16}\text{O}, {}^{3}\text{H}(d, n){}^{4}\text{He}$
 - Alpha clustering in nuclei and nuclear deformation
 - Structure of exotic nuclei like ¹¹Li studied extensively at TRIUMF ARIEL
 - Further dripline studies, nuclear shell evolution and shape coexistence
 - Extension to heavy nuclei: ²⁰⁸Pb skin, input for r-process simulations, superheavy region(?!)
- Ab initio theory for beyond-standard-model physics
 - gA quenching → Neutrinoless double beta decay matrix elements for all key nuclei
 - WIMP-nucleus and neutrino-nucleus scattering for dark matter/neutrino
 - Calculations for nuclei in searches for symmetry-violating moments (eg, anapole, EDM...)
 - Superallowed beta decay for isospin mixing correction δ_C
- Key applications of nuclear astrophysics
 - Guide future ARIEL/worldwide RIB experiments for interpreting astrophysical observables
 - Advance applications of statistical methods/machine learning for nuclear astrophysics
 - Leverage multi-messenger/gravitational wave era capabilities to inform fundamental nuclear physics

In synergy with experiments, ab initio nuclear theory is the leading approach to understand low-energy properties of atomic nuclei