

The future of high-energy neutrino detection

Felix Henningsen

for the P-ONE Collaboration TRIUMF Science Week 2022

Neutrinos as cosmic messengers

Only weakly interacting = small cross section

Unimpeded by magnetic fields and dust

Neutrino detectors

Detection principles

Use array of sensors in optical medium to detect
 Cherenkov light of neutrino secondaries

~3km

Neutrino detectors

Detection principles

- Use array of sensors in optical medium to detect
 Cherenkov light of neutrino secondaries
- □ Low flux = require **gigantic** volumes
- Natural detector media are used
 - Ocean, lakes, glaciers

Deep Core

Eiffel Towe

IceCube Lab

Image KM3NeT Collaboration (in construction since 2015)

Neutrino detectors

Global effort

- Use array of sensors in optical medium to detect **Cherenkov light** of neutrino secondaries
- Low flux = require **gigantic** volumes
- Natural detector media are used
 - Ocean, lakes, glaciers
- Global experimental effort
 - Experiments IceCube, KM3NeT, GVD, P-ONE
 - Medium Water, ice
 - **Energies** GeV PeV

P-ONE

SFU DEPARTMENT

OF PHYSICS

in operation since 2010

P-ONE SFU DEPARTMENT OF PHYSICS

Global effort

Use array of sensors in optical medium to detect
 Cherenkov light of neutrino secondaries

Low flux Water construction, operation and maintenance Natural Ocean, Ocean, Ocean,

- Global experimental effort
 - Experiments IceCube, KM3NeT, GVD, P-ONE
 - Medium Water, ice
 - Energies GeV PeV

What's different?

- Deep-sea optical cable network operated by Ocean Networks Canada (completed 2009)
- □ Annual budget ~\$27M (CDN)

Publications JINST 14 PO2013 (2019) – Nature Astronomy 4(2020) – Eur. Phys. J. C 81, 1071 (2021)

Phase 1: Pathfinders

Publications JINST 14 PO2013 (2019) – Nature Astronomy 4(2020) – Eur. Phys. J. C 81, 1071 (2021)

Phase 2: Project status

Phase 2: Project status

SFU

DEPARTMENT OF PHYSICS

P-ONE

Discoveries International synergy

Key innovations

Final thoughts

- Ocean Networks Canada is an exciting partner for deep-ocean (neutrino) physics
- □ P-ONE is an exciting project for Canadian-based leadership
- □ Project is growing fast with clear path towards P-ONE demonstrator
- □ New collaborators are welcome to join our efforts!

If you want to learn more: https://www.pacific-neutrino.org/

European Research Council Established by the European Commission

Neutrino detectors

P-ONE SFU

P-ONE-1 1000m

Images: ONC, TUM

Muon animation

			Image L. Schuma
			Per-sar
			BAIKAL-GVD
Use array Cherenk			

