A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

Dalini D. Maharaj

2022 Science Week – Monday 18th July 2022

A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

Dalini D. Maharaj

2022 Science Week – Monday 18th July 2022

Overview

- Why does Canada need neutrons?
- Overview of Compact Accelerator-based Neutron Sources (CANS)
- The Prototype Canadian CANS
- Objectives of Target Moderator Reflector Optimization
- Current Studies, Timeline & Impact

Current Status of Neutron Beams in Canada

- Neutron Gap National Research Universal (NRU) reactor shut down in 2018
- McMaster Nuclear Reactor only source of neutron beams in Canada

- Similar story globally major research reactors closed e.g. BER-II, JEEP and Orphée
- Need new (affordable) pathways for neutron production
- Demand for high brilliance, pulsed neutron beams in Canada

The Compact Accelerator-based Neutron Source (CANS) Concept

Linac	Protons ~ MeV	Target	Neutrons	End Stations
DF, Duty Factor f, Frequency	Pulse Duration ∼ 100's µs	Beryllium or Lithium		Neutron Sciences, Medical Beamlines

Advantages

- I. Compact less shielding required
- **II.** Lower cost when compared with reactor and spallation sources
- III. High brilliance, pulsed neutron beams realized
- IV. Scalable technology via
 - Boosting proton energy
 - Increasing accelerator current

Global Neutron Landscape

- CANS provide neutrons to serve **most** user needs
- PC CANS designed to be competitive against similar scale sources

Neutron Beam Applications

Neutron Sciences I. Thermal Neutrons 10 meV < E < 100 meV e.g. diffraction to resolve crystal structures ~ Angstroms

II. Cold NeutronsE < 10 meVe.g. large scale structures

Boron Neutron Capture Therapy (BNCT) Epithermal Neutrons 0.5 eV < E < 10 keV

Overview and Objectives of the PC CANS

Overview and Objectives of the PC CANS

Performance at End Stations

Application		I _{avg} /I _{pk}				
		PC-CANS 1		PC-CANS 2	PC-CANS 3	
		0.1/2	0.2/4	0.5/10	1/20	
Neutron	Cold Yield (n/cm ² /s)	-	$2.8 \times 10^{5}/5.6 \times 10^{6}$	7 × 10 ⁵ /1.4 × 10 ⁷	$1.4 \times 10^{6}/2.8 \times 10^{7}$	
Science	Thermal Yield (n/cm ² /s)	_	$1.3 \times 10^{6}/2.6 \times 10^{7}$	$3.3 \times 10^6/6.5 \times 10^7$	$6.5 \times 10^{6}/1.3 \times 10^{8}$	
BNCT	Epithermal Yield (n/cm ² /s)	-	1 × 10 ⁸	2.5 × 10 ⁸	5 × 10 ⁸	
PET	Saturation Yield (GBq)	240	-	-	-	

I. Small-angle neutron scattering - High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of \approx 50 Hz

II. Boron Neutron Capture Therapy - Therapeutic epithermal neutron flux of $> 1 \times 10^8$ n/s are possible, enabling a BNCT R&D station

III. F-18 Isotope Production for PET - Competitive rates for F-18 production

Performance at End Stations

Application		I _{avg} /I _{pk}				
		PC-CANS 1		PC-CANS 2	PC-CANS 3	
		0.1/2	0.2/4	0.5/10	1/20	
Neutron	Cold Yield (n/cm ² /s)	-	$2.8 \times 10^{5}/5.6 \times 10^{6}$	7 × 10 ⁵ /1.4 × 10 ⁷	$1.4 \times 10^{6}/2.8 \times 10^{7}$	
Science	Thermal Yield (n/cm ² /s)	-	$1.3 \times 10^{6}/2.6 \times 10^{7}$	$3.3 \times 10^{6}/6.5 \times 10^{7}$	$6.5 \times 10^6 / 1.3 \times 10^8$	
BNCT	Epithermal Yield (n/cm ² /s)	_	1 × 10 ⁸	2.5 × 10 ⁸	5 × 10 ⁸	
PET	Saturation Yield (GBq)	240	-	-	-	

I. Small-angle neutron scattering - High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of \approx 50 Hz

II. Boron Neutron Capture Therapy - Therapeutic epithermal neutron flux of $> 1 \times 10^8$ n/s are possible, enabling a BNCT R&D station

III. F-18 Isotope Production for PET - Competitive rates for F-18 production

TMR - Optimization Important

Baseline Target Moderator Reflector (TMR) System for Neutron Sciences

Beryllium Target – Produces neutrons via stripping reactions

Pre-moderator – slows neutrons from ~ MeV to thermal energies ~10-100 meV

Moderator – slows thermal neutrons to cold energies < 10 meV

Reflector – backscatters high energy neutrons for further moderation

Shielding – protects users from exposure to harmful radiation

Simulation Tools for Target Moderator Optimization

- FLUKA optimized for high energy particle transport but agrees well at 10 MeV
- Custom cross sections for moderator materials in MCNP
- Target-Moderator-Reflector studies for cold neutron beamlines in MCNP
- Target development and shielding studies in FLUKA

Objectives of Target Moderator Reflector Design & Optimization

- Optimize neutron yields
- Optimize neutron time structure and spectra

(i) Each neutron instrument has its own requirements for pulse structure

(ii) Influence of proton time structure on neutron time structure

(ii) Materials selected for TMR affect neutron time structure and neutron spectrum delivered

Influence of Reflector Selection on Neutron Yield

Neutron flux for Mesitylene cold moderator (n/cm²/mC/s)					
	Lead	Graphite	Beryllium		
Cold Flux	3.92×10 ⁷	$1.09 imes 10^{8}$	2.68×10 ⁸		
Thermal Flux	8.07×10 ⁸	1.70×10 ⁹	3.88×10 ⁹		
Total Flux	4.39×10 ⁹	5.82×10 ⁹	$7.99 imes 10^{9}$		

- Performance Be > C > Pb with respect to neutron yield
- Beryllium and graphite,
 - Fast neutron spectrum is significantly suppressed
 - Thermal neutron yields are higher

Matching Proton Pulse Structures with SANS Requirements

2.0e3

Time $|\mu s|$

4.0e3

6.0*e*3

Summary of TMR Objectives & Funding Prospects

I. Current Activities in TMR Optimization

- Optimization of neutron pulse duration for SANS instrument
- Optimize material thicknesses for baseline design for two tube arrangement
- Evaluate SANS instrument performance based on optimized solution
- II. CFI application submitted in July 2022
- III. Conceptual design report to be released in June/July 2022.

PC CANS Timeline & Scientific Impact

Description	Milestone	Elapsed time
Conceptual design study complete	June 2022	
CFI proposal submitted	July 2022	
CFI Funding Decision	June 2023	Time 0
Technical design report completed	December 2024	T0+18 months
Award finalization	January 2025	T0+19 months
Launch tender process	June 2025	T0+24 months
Scientific optimization complete	December 2025	T0+30 months
Launch long lead procurements	June 2026	T0+36 months
Start building construction	January 2027	T0+43 months
Ready for occupancy	January 3031	T0+91 months
Install source and LEBT	June 2031	T0+96 months
Install RFQ and DTL	October 2031	T0+100 months
Accelerator commissioning started	January 2032	T0+103 months
Install HEBT and TMR/BSA	March 2032	T0+105 months
Install instruments	October 2032	T0+112 months
First moderated neutrons detected	October 2032	T0+112 months
PC-CANS completion	March 2033	T0+117 months

Institutional Benefits

• Enhance core competence in target and accelerator science and technology

Societal Impact

- Advance Canadian science and industry in high-power hadron accelerators
- Open doors to diversity of applications in clean-tech, medicine, and security

Acknowledgments

Mina Abbaslou (TRIUMF/UVic) Sana Tabbassum (Purdue) Marco Marchetto (TRIUMF) Norman Muller (TRIUMF) Zahra Yamani (CNL) Vinicius Anghel (CNL) Ronald Rogge (CNL) Helmut Fritzsche (CNL) Daniel Banks (TVB Associates) Zin Tun (TVB Associates) Alexander Gottberg (TRIUMF/UVic) Robert Laxdal (TRIUMF/UVic) Oliver Kester (TRIUMF/UVic) Drew Marquardt (UWindsor)

This work is supported by NFRF-E Grant Number NFRFE-2018-00183

Fonds Nouvelles frontières en recherche New Frontiers in Research Fund

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens