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Big-Bang Nucleosynthesis

8

> Alpher, Bethe and Gamov ¢
(1948) argued that all of the
elements were produced in 1
the early Universe,

> The nuclei built up through 2
neutron capture in the
“overheated neutral nuclear :
fluid.”

» The neutrons started to
stick to each other about 20 |
seconds after the start of 5 7 76 o 70 750
time. FiG. 1.
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Big-Bang Nucleosynthesis
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The Abundance of the Elements

Mass fraction in parts per million vs. Nuclide
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bundance of the Elements

Mass fraction in parts per million vs. Nuclide
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The Abundance of the Elements

Mass fraction in parts per million vs. Nuclide
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The Abundance of the Elements

Mass fraction in parts per million vs. Nuclide
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Mass fraction in parts per million vs. Nuclide
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The Abundance of the Elements

Mass fraction in parts per million vs. Nuclide
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The Abundance of the Elements

Mass fraction in parts per million vs. Nuclide
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According to Hoyle (1946)
1. Initially the only element present in the universe is hydrogen.

2. Helium is synthesized by thermonuclear reactions taking place
in “normal” stars.

3. A further process occurs that synthesizes higher elements from
hydrogen and helium. The elements produced are regarded as
having a distribution similar to that found on the Earth.

According to Bondi and Salpeter (1952): After all of the helium is
also used up, the star again contracts gravitationally. The central
temperature increases, and heavier and heavier nuclei are built up
... This may be identified with the observed spectacle of a
supernova, and all the heavy elements in the universe may owe
their origin to such processes.
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Stars (Hoyle 1954 - up to Nickel)
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F1c. 1.—The general cosmological framework assumed for this discussion
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Stars (Cameron 1955)

The C'3(a, n)O'® reaction produces neutrons rapidly at a
temperature of 108 K.
L — I s E Y B B B —‘zoo

100

150

e
T
SN310AN ¥3d A38NLdVDO SNOHLN3N

CAPTURE CROSS SECTION (BARNS)

001

| | | | ! | | | | |
0 20 40 60 80 100 20 140 160 180 200 220 240
MASS NUMBER ALONG CAPTURE PATH

Jeremy Heyl Nucleosynthesis



Stars (FB? 1955a)

“Within the error due to the rvepoaen Burning —
uncertainties in the quantities HT’L:HE

used in this estimate, it does o

appear, therefore, that synthesis £

of the heavy elements in the s

S-star stage alone could account 2 l,.;;" R
for a considerable fraction of the l Ne _:__’Ne e
heavy elements. A fraction of the ge Jg/ s

same order would be obtained by §§ ' i
supposing that the normal M gE  Metolsy Ti®
giants were also synthesizing the 2" Heavy §

heavy elements at a much slower Flements L
rate.” Nestion copture 7R
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Stars (FB? 1955b)

Facts about Carbon Stars:

1. Sr, Y, and Zr are
overabundant by a factor of
about 25.

2. La, Ce, Pr, Nd, Sm, Eu, Gd,
and Dy have a mean
excessive abundance ratio of
the order of 600, while Ba is
the only member of this
group to have an apparently
normal (solar) abundance.

3. Pb is probably overabundant
by a factor of about 1500
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Stars (FB? 1955b)

Facts about Carbon Stars:

1. Sr, Y, and Zr are
overabundant by a factor of

about 25.
2. La, Ce, Pr, Nd, Sm, Eu, Gd, “The natural radioactive
and Dy have a mean elements may be produced by

excessive abundance ratio of collisions between metal nuclei
the order of 600, while Ba is and the stable, heavy nuclei, such
the only member of this as lead and bismuth.”

group to have an apparently

normal (solar) abundance.

3. Pb is probably overabundant
by a factor of about 1500
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Stars (HFB? 1956)
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Stars (HFB? 1956)

“The production of Cf2%*
in the thermonuclear test
at Bikini in November
1952 demonstrates that
rapid neutron capture can
surmount spontaneous
radioactivity”
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Stars (B°FH 1957)
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Stars (B°FH 1957)
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Stars (B°FH 1957)
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Stars (B°FH 1957)
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Stars (B°FH 1957)
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Nucleosynthesis

Big Dying Exploding Human synthesis
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r—process in Core-Collapse SN to the limit
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r—process in Core-Collapse SN to the limit
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r—process in Core-Collapse SN to the limit
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r—process in Core-Collapse SN to the limit
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r—process in Core-Collapse SN to the limit
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Another r—process
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A Modern Picture
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Nucleosynthesis

Big Exploding Human synthesis
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Full Circle

» Alpher, Bethe and Gamov (1948) argued that the nuclei built
up through neutron capture in the expanding “overheated
neutral nuclear fluid” after the Big Bang.

» Most of the r—process occurs through neutron capture in the

expanding “cold neutral nuclear fluid” in neutron-star
collisions.
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