

Ani Aprahamian University of Notre Dame

From ARIEL to the Universe

R-process Sensitivities and Measurements

TRIUMF Science Week July 16-19,2018

Courtesy of H. Schatz

Origin of more than 50% of all the elements beyond iron Site of r-process is still one of open challenges in all of physics today

Temperature, density as a function of time, initial compositions, neutrons

Colliding Neutron Stars

Origin of Gold

and r-process? **Nuclear Physic** 82

90

142

What are the Nuclear Physics Challenges? Nuclear Structure Major Shells and evolution of shells...

R-process Sensitivity Studies

onset of deformation

Mumpower, Surman, McLaughlin, Aprahamian, et al.

Nuclear masses β -decay rates n- capture β -delayed n-emission

r-process

R-process Sensitivities and Measurements

within.

How do you decide which nuclei to measure

What is the required precision?

Courtesy of N. Vassh

Over an order of magnitude difference in the Y(A) for **0.5MeV** addition in mass of 140-Sn!

Mumpower, Surman, Fang, Beard, Moller, Kawano, Aprahamian, Phys. Rev. C 92, 035807, 2015

Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86, 2016

F- values available and provide motivations to rib facilities worldwide

Each sensitivity study has prompted JINA-CEE collaborations

Ani Aprahamian - CPT Fernando Montes - RIKEN Iris Dillmann - BRIKEN

Nuclear masses β-decay rates n- capture β-delayed n-emission

Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86, 2016

Experimental reach for the present and future...

Improvements that can be realized with new experiments ...

Extrapolated AME2012 + FRDM2012 Ν A 10⁰ FRDM2012 ब (टू^{10⁻} Ν 10-2 В 10^{-3} **FRIB** reach \sim С Ν

What is the required precision?

$\Delta BE=+/-0.5 MeV$

Mumpower, Surman, McLaughlin, Aprahamian, Progress in Particle and Nuclear Physics 86, 2016

Global Uncorrelated Mass Model Uncertainties

Hot r-process trajectory rms error reduced to 100 keV

Mumpower, Surman, McLaughlin, Aprahamian Progress in Particle and Nuclear Physics 86, 2016

proton Number

8/20/18

Penning Traps

- Strong magnetic field provides radial confinement
- Addition of hyperbolic electric potentials produce axial confinement
- TOF-ICR Method was standard

Phase-imaging mass measurements

Use a position-sensitive MCP with delay-line anode to measure the position of ions when they hit the MCP.

Known masses in the rare-earth region

Fission from ²³⁵U --- Finland - TOF-ICR TITAN – TRIUMF -

TOF-ICR: JyFLTRAP Phys. Rev. Lett. 120, 262701, 2018

Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the r-process calculations

M. Vilen,^{1,*} J.M. Kelly,^{2,†} A. Kankainen,¹ M. Brodeur,² A. Aprahamian,² L. Canete,¹
 T. Eronen,¹ A. Jokinen,¹ T. Kuta,² I.D. Moore,¹ M.R. Mumpower,^{2,3} D.A. Nesterenko,¹
 H. Penttilä,¹ I. Pohjalainen,¹ W.S. Porter,² S. Rinta-Antila,¹ R. Surman,² A. Voss,¹ and J. Äystö¹

FIG. 2: (Color online) Two-neutron separation energies S_{2n} from this work (red) together with the experimental (solid black circles) values and an extrapolated value for ¹⁶⁵Tb (open black circle) from AME16 [62]. The dashed blue lines indicate the values assuming the ground state of ¹⁶³Gd was measured in this work.

FIG. 3: (Color online) Neutron pairing energies from this work (red circles) and AME16 (blue) in comparison with various theoretical predictions for the Gd isotopes. No N=100 subshell closure

Fission recycling

Without fission recycling

Reverse Engineering r-process calculation

Mumpower, McLaughlin, Surman, and Steiner J. Phys. G: Nucl. Part. Phys. 44, 034003 (2017)

The rare-earth peak

- Two proposed ways to form the rare-earth peak
 - 1. Dynamical formation during freeze-out
 - 2. Fission cycling
- Dynamical formalism needs some nuclear structure effect where material can "pile up" as they decay towards stability.

Courtesy of R. Orford

Mumpower, McLaughlin, Surman, and Steiner, Astrophysical Journal, 833:282, 2016

Duflo Zuker mass model prediction

 Considered a hot *r* process environment that you may find in the accretion disk of neutron star merger scenario

$$\chi^2 \sim 20$$

 Comparing predicted masses to measurements allows us to say something about the astrophysical environment.

Phys. Rev. Lett. 120, 262702 (2018)

Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation

R. Orford,^{1,2,*} N. Vassh,^{3,†} J.A. Clark,^{2,4} G.C. McLaughlin,⁵ M.R. Mumpower,⁶
G. Savard,^{2,7} R. Surman,³ A. Aprahamian,³ F. Buchinger,¹ M.T. Burkey,^{2,7} D.A. Gorelov,^{2,4}
T.Y. Hirsh,^{2,4,8} J.W. Klimes,² G.E. Morgan,^{2,4} A. Nystrom,^{2,3} and K.S. Sharma⁴

Orford et al., Phys. Rev. Lett. 120, 262702 (2018)

FIG. 2. (Color online) Comparison between experimental values and theoretical predictions (red band) of the nuclear masses relative to the Duflo-Zuker mass model for neodymium and samarium isotopes in a merger accretion disk wind scenario ($s/k_B = 30$, $\tau = 70$ ms, and $Y_e = 0.2$).

FIG. 3. (Color online) Rare-earth peak abundances using Dulfo-Zuker masses (black dashed) as compared to the result for this same astrophysical trajectory after the algorithm finds the mass predictions of Fig. 2 (solid red band). Pink and blue curves serve to show the change in the abundance pattern obtained from using other disk wind parameters but with the same mass surface.

- Comprehensive sensitivity studies of the r-process to individual nuclear properties
- Propagation of mass changes to all dependent properties (self-consistence)
- Identifying the site of the r-process path.... **Disentangling Nuclear Physics uncertainties** from the Astrophysical uncertainties...Progress.
- Details of neutron merger scenario....nuclear physics
- Nuclear Physics provides insight into details of r-process

R-process Sensitivities and Measurements

UNIVERSITY of Manitoba

