Opportunities for Nucleosynthesis Studies with TI-STAR and TIGRESS at ARIEL

Dennis Mücher, Leyla Atar, Tomer Rockman University of Guelph + TRIUMF for the TIGRESS and TI-STAR collaborations

Intro: indirect approaches to nucleosynthesis studies

Example: spectroscopy of ²²Ne resonances at ISAC-II

E _r (MeV)	E_x (MeV)	J ^{π a}	$\omega\gamma_{(\alpha, \gamma)} \ (\mu eV)^{b}$	$\omega \gamma_{(\alpha, n)} (\mu e V)^{b}$					
$^{18}O + \alpha$									
0.058	9.72	3-	4.1×10^{-40}						
0.218	9.85	$\binom{(2^+)}{2^+}$	1.5×10^{-39} 7.1×10^{-12} 5.8×10^{-11}						
0.470	10.05	0+	0.55						
0.566	10.13	(1^{-}) 4 ⁺ (2^{+})	0.23 7.9 × 10 ⁻³ 1.95						
0.662	10.21	(3 ⁻) 1 ⁻	0.15 230 ± 25°						
	Deute	eron target	Proton recoil	N					
			<~~~~	in the second se					
	²¹ Ne	²²	le						

Particle-gamma spectroscopy with TIGRESS

Example: spectroscopy of ²²Ne resonances at ISAC-II

rp-process

Indirect measurements for the rp-process

- ⁵⁷Cu(d,n)⁵⁸Zn
- using GRETINA @ NSCL
- resolution and statistics at the limit

C. Langer, ^{1,2,*} F. Montes, ^{1,2} A. Aprahamian, ³ D. W. Bardayan, ^{4,†} D. Bazin, ¹ B. A. Brown, ^{1,5} J. Browne, ^{1,2,5} H. Crawford, ⁶

Constraining neutron capture rates

Constraining neutron capture rates

GRIFFIN: T_{1/2} and β -delayed neutrons

TIGRESS: neutron capture rates

Validation of the "Oslo" method

M. Guttormsen et al., PRC 96, 024313 (2017)

Oslo-method: doable for exotic beams at ARIEL?

resolution vs. target thickness

¹³⁶Sn(d,p) at ARIEL and CD₂ targets

Target thickness becomes a critical issue with increasing Z of the beam: $\Delta E \sim Z^2$

Idea:vertex tracking at ISOL energies using Si detectors

Layout of TI-STAR

TI-STAR = TIGRESS Silicon Tracker ARray

Mechanical Design:

- Fred Sarazin (Colorado School of Mines)
- Robert Hendersson (TRIUMF)

Layout of TI-STAR

SKIROC-2 ASICs

TI-STAR simulation

Silicon Tracker: Geant4 simulations

recoil energy vs. theta (lab)

Silicon Tracker: Geant4 simulations

Error between reconstructed and true origin vs. true origin

Silicon Tracker: Geant4 simulations

Excitation Energy Spectrum from reconstructed Protons

TI-STAR performance: ¹³⁶Sn(d,p)

Implementing Realistic Beam Physics

- ¹³²Sn(d,p) @ 6 MeV/u
- TI-STAR gas target (2.84 mg/cm² D2) with foils

Implementing Realistic Beam Physics

- ¹³²Sn(d,p) @ 6 MeV/u
- TI-STAR gas target (2.84 mg/cm² D2) with foils

Implementing Realistic Beam Physics

- ¹³²Sn(d,p) @ 6 MeV/u
- comparison: CD₂ foil; 10mg/cm²

TIGRESS energy resolution using TI-STAR

- Gamma ray resolution not limited by target thickness
- PSA and gamma ray tracking limiting factors

C.E. Svensson et al. / NIM A 540 (2005) 348–360

Oslo-method using TI-STAR and TIGRESS

Neutron capture rates accessible using ARIEL beams

reproduce known n-capture cross sections using stable beams

- targeted towards future RIB experiments
- possible first experiments: Sn,In, Lu, Yb stable beam
- (d,p), (p, alpha) and other reactions
- different beam energies
- (d,p) for thin (0.5 mg/cm²) and thick target (5 mg/cm²?)
- understand role of EMMA

Lu 174 142 d 3.31 a ^{hy 45;} ^{67;} ^{9;} ^{9;} ^{9;} ^{9;}	Lu 175 97.41	Lu 176 2,59 3.58 h 5-1.2; 13.::« 3.907; 3.907;	Lu 177 601d 6.71 d β ^{-0.5} γ208; 113	Lu 178 22.7 m 28.4 m 5 ⁻ 2.0 7 ⁰³ ; 5 ⁻ 1.2 1341; 330	Lu 179 4.6 h β ⁻ 1.4	Lu 180 5.7 m β ⁻ 1.5; 2.7 γ 408; 1199; 1107: 215	Lu 181 3.5 m
273) 76 Yb 173 16.13	σ ¹⁶⁺⁸ Yb 174 31.83	Yb 175 4.2 d	e 3.2 e 1000 Yb 176 12 s 12.76	mi 1209;g Yb 177 6.5 s 1.9 h	9 Yb 178 74 m	g Yb 179 7.9 m	575 Yb 180 2.4 m
σ16 σn, α <1E-6	σ63 σ _{n. α} <0.00002	β 0.5 γ396; 283; 114	lγ 293 390; 190; or 3.1 96 σ _{6.0} <1E-6	β ^{-1,4} γ 150; 1900; 122; 228 e ⁻ 9	β 0.6 γ391; 348; 9	β γ 592; 612; 381; 654	β γ 173; 375; 420; 386
Tm 172 63.6 h	Tm 173 8.2 h	Tm 174 2.29 s 5.4 m	Tm 175 15.2 m	Tm 176 1.9 m	Tm 177 85 s	<	
β 1.8; 1.9 γ 79; 1094; 1387; 1530; 1466; 1609	β 0.9; 1.3 γ 399; 461	β 1.2 γ 366; 992; 273; 152 177	β 0.9; 1.9 γ 515; 941; 364	β 2.0; 2.8 γ 190; 1069; 382 9	β γ 105; 518 g; m	2.8E-10	7.8E-11

Step 1: establish γ -Oslo at TIGRESS

first new data a few steps away from stability

- a few selected cases of largest interest, likely Yb Lu region
- gain experience for post-acceleration of such heavy, RIB at ISAC-II
- probably using thick CD₂ target in SHARC
- understand delta electrons in SHARC when using thick targets
- beam impurities will be a challenge, maybe EMMA can help

Lu 174 142 d 3.31 a hy 45; 67 6 67 6 1000	Lu 175 97.41	Lu 176 2.59 3.68 h 3.8-10 ¹⁰ a 5 ^{-1.2;} 1.3.::« 3.8-10 ¹⁰ a 5 ^{-0.6} 1.307;	Lu 177 160.1 d. 6.71 d β ^{-0.2} β ^{-0.5} γ 414; γ 208; 319; 122 113	Lu 178 22.7 m 28.4 m 8 ⁻ 12. 1341; 1341;	Lu 179 4.6 h	Lu 180 5.7 m β ⁻ 1.5; 2.7 γ408; 1199; 1107: 215	Lu 181 3.5 m
273) 76 Yb 173	σ 16 + 8 Yb 174	Yb 175	Yb 176	Yb 177	y Yb 178	9 Yb 179	Yb 180
16.13 σ16 σ _{n, α} <1E-6	31.83 σ63 σ _{n.α} <0.00002	4.2 d β ⁻ 0.5 γ396; 283; 114	12 s 12.76 hy 293 390; 190; 96 at 3.1 at a clE46	6.5 s 1.9 h β ⁻¹ 1.4 γ 150; ½ 104; 1080; 122; 228 1241 e g	74 m β 0.6 γ391; 348; 9	7.9 m β γ592; 612; 381; 654	2.4 m β ⁻ γ 173; 375; 420; 386
Tm 172 63.6 h β 1.8; 1.9	Tm 173 8.2 h	Tm 174 2.29 s 5.4 m	Tm 175 15.2 m	Tm 176 1.9 m β ⁻ 2.0; 2.8	Tm 177 85 s	2.8E-10	7.8E-11
γ 79; 1094; 1387; 1530; 1466; 1609	β 0.9; 1.3 γ 399; 461	y 100; 152 177	β 0.9; 1.9 γ 515; 941; 364	γ 190; 1069; 382 9	β γ 105; 518 g; m		110

Step 2: pre-CANREB beams

CANREB will allow to continue the systematic program:

- Significant boost in intensity and purity of heavy beams
- first r-process relevant data
- comparison to beta-Oslo (e.g. SUN)

Lu 174 142 d 3.31 a 17 45: 67 67 97: 992: 7(1992: 76	Lu 175 97.41 or 16 + 8	Lu 176 2.59 3.68 h 5 ^{-1,2} ; ^{13; 4} ⁷⁸ ⁷⁸ ^{707;} ^{707;} ^{722;} ^{722;} ^{822;} ^{822;} ^{822;}	$\begin{array}{c c} Lu & 177 \\ \hline 160.1 \ d \\ \beta^- 0.2 \\ \gamma 414; \\ 319; 122 \\ m; \\ \sigma^- 3.2 \\ \eta & 1000 \end{array}$	Lu 178 22.7 m 28.4 m β ⁻ 20 γ93. ^{β⁻12} ^{γ332} ^{m1} 1310; 1209; g	Lu 179 4.6 h β ⁻ 1.4 γ ²¹⁴ 9	Lu 180 5.7 m β ⁻ 1.5; 2.7 γ408; 1199; 1107; 215 9	Lu 181
Yb 173 16.13 ^{σ 16} σ _{n, α} <1E-6	Yb 174 31.83 σ 63 σ _{n. α} <0.00002	Yb 175 4.2 d ^{β⁻0.5} ^{γ396; 283;} 114	Yb 176 12 s 12.76 ¹ / ₇ 293 390; 190; at 3.1 96 at 256	Yb 177 6.5 s 1.9 h β ⁻ 1.4 γ 150; 1y 104; 1080; 122; e ⁻ 9	Yb 178 74 m ^{β⁺ 0.6} γ ^{391; 348;}	Yb 179 7.9 m ^{β⁻} _{7592; 612;} _{381; 654}	Yb 180 2.4 m ^{β⁻} ^{γ173; 375;} 420; 386
Tm 172 63.6 h β 1.8; 1.9 γ79; 1094; 1387; 1530; 1466; 1609	Tm 173 8.2 h β 0.9; 1.3 γ399; 461	Tm 174 2.29 s 5.4 m γ 56.9 γ 962; 273; 152	Tm 175 15.2 m ^{β⁻ 0.9; 1.9} _{γ 515; 941; 364}	Tm 176 1.9 m β ⁻ 2.0; 2.8 γ 190; 1069; 382 9	Tm 177 85 s ^{β⁻} γ 105; 518 g; m	2.8E-10	7.8E-11

Step 3: experiments with CANREB and SHARC

CANREB will allow to continue the systematic program:

- Significant boost in intensity and purity of heavy beams
- first r-process relevant data
- comparison to beta-Oslo (e.g. SUN)

Lu 174 142 d 3.31 a 17 45: 67 67 97: 992: 7(1992: 76	Lu 175 97.41 or 16 + 8	Lu 176 2.59 3.68 h 5 ^{-1,2} ; ^{13; 4} ⁷⁸ ⁷⁸ ^{707;} ^{707;} ^{722;} ^{722;} ^{822;} ^{822;} ^{822;}	$\begin{array}{c c} Lu & 177 \\ \hline 160.1 \ d \\ \beta^- 0.2 \\ \gamma 414; \\ 319; 122 \\ m; \\ \sigma^- 3.2 \\ \eta & 1000 \end{array}$	Lu 178 22.7 m 28.4 m β ⁻ 20 γ93. ^{β⁻12} ^{γ332} ^{π1} 1310; 1209; g	Lu 179 4.6 h β ⁻ 1.4 γ ²¹⁴ 9	Lu 180 5.7 m β ⁻ 1.5; 2.7 γ408; 1199; 1107; 215 9	Lu 181
Yb 173 16.13 ^{σ 16} σ _{n, α} <1E-6	Yb 174 31.83 σ 63 σ _{n. α} <0.00002	Yb 175 4.2 d ^{β⁻0.5} ^{γ396; 283;} 114	Yb 176 12 s 12.76 ¹ / ₇ 293 390; 190; at 3.1 96 at 256	Yb 177 6.5 s 1.9 h β ⁻ 1.4 γ 150; 1y 104; 1080; 122; e ⁻ 9	Yb 178 74 m ^{β⁺ 0.6} γ ^{391; 348;}	Yb 179 7.9 m ^{β⁻} _{7592; 612;} 381; 654	Yb 180 2.4 m ^{β⁻} ^{γ173; 375;} 420; 386
Tm 172 63.6 h β 1.8; 1.9 γ79; 1094; 1387; 1530; 1466; 1609	Tm 173 8.2 h β 0.9; 1.3 γ399; 461	Tm 174 2.29 s 5.4 m γ 56.9 γ 962; 273; 152	Tm 175 15.2 m ^{β⁻ 0.9; 1.9} _{γ 515; 941; 364}	Tm 176 1.9 m β ⁻ 2.0; 2.8 γ 190; 1069; 382 9	Tm 177 85 s ^{β⁻} γ 105; 518 g; m	2.8E-10	7.8E-11

Step 3: experiments with CANREB and SHARC

pushing towards the limits using TI-STAR

- measure all accessible dominant n-capture cross sections
- at the same time: studies on nuclear structure
- also allows a systematic program on halo features of heavy nuclei

50 MeV x 10 mA electrons [1/s]

Step 4: experiments with ARIEL and TI-STAR

Silicon Tracker: Team

- L. Atar, T. Rockman (both UofG): Geant4
- Hadi Behnamian (Iranian lightsource facility): new postdoc to start in the fall: detector development, cooling
- Vinzenz Bildstein, UofG: essential for this project
- **R. Gernhäuser, M. Böhmer** (both TU Munich): ASICs, PCBs
- F. Sarazin (Mines), R. Hendersson (TRIUMF): mechanical design, mechanics
- F. Retiere (TRIUMF) + team: FPGA
- R. Openshow, P. Lu (TRIUMF): gas system
 - gate-0 at TRIUMF:
 - October 2016: meeting w. TRIUMF detector + electronics experts
 - May 2017: CFI JELF envelope at U. of Guelph (\$400k)
 - January 2018: submission to CFI-JELF (total budget \$750k)
 - gate 1+2: in preparation
 - CFI results expected soon