The SuperCDMS experiment at SNOLAB

Emanuele Michielin on behalf of the SuperCDMS Collaboration

University of British Columbia - TRIUMF

The GUINEAPIG workshop

September 8th 2022

1/24

The SuperCDMS Collaboration

 ~ 100 scientists at 27 institutions from 6 countries

SuperCDMS detector technology

When a particle scatters in a Si/Ge crystal lattice its transferred energy is dissipated via **heat** and **ionization**. If we can measure those, we'll have a clear signature of its interaction and we can infer its properties.

• **Phonons**, measured via Quasi-particle trap assisted Electrothermal feedback Transition edge sensors (QETs)

• Charge, measured via interleaved electrodes

SuperCDMS detectors

Interleaved \mathbf{Z} -sensitive Ionization and Phonon detector:

- 12 phonon, 4 charge channels
- Small bias voltage $(<10\,\mathrm{V})$ across the detector
- Measurement of phonon and ionization signals for discrimination between nuclear and electron recoil events
- $\sim 1~{\rm keV}$ threshold with ER/NR discrimination power

\mathbf{HV} detector:

- Only 12 phonon channels
- Larger bias voltage $(\sim 100\,{\rm V})$ across the detector
- Dominant phonon energy contribution is from phonons created by drifting charges (Neganov-Trofimov-Luke (NTL) effect)
- Additional NTL energy boost particle interaction signal without degrading resolution
- Push threshold down to ~ 100 eV, but no event by event ER/NR discrimination

SNOLAB SuperCDMS detectors

Successful campaign in Soudan finished, now moving to SNOLAB.

Detectors improvements:

- Bigger (more fiducial volume) and higher purity (fewer radioactive impurities) crystals
 - Ge (1.4 kg crystals) larger exposure
 - Si (0.6 kg crystals) lower mass reach

- Critical temperature ${\rm T}_c$ reduced from 90 to 40 mK, resolution scales as ${\rm T}_c^3$
- Newly optimized QET geometry to enhance the phonon collection efficiency
- More channels for better event position reconstruction

Moving to SNOLAB

- 2 km underground (6800 m water equivalent)
- Cleanroom (class 2000 or better)
- Muon flux from cosmic rays reduced by a factor of 100 compared to the Soudan mine

SuperCDMS SNOLAB Experiment

Initial payload: ~ 30 kg total, 4 towers with 6 detectors per tower (12 iZIP, 12 HV)

- ν -dominated nuclear recoil bkg
- $\mathcal{O}(0.1)$ cts/(keV kg d) γ bkg

- 15 mK base temperature
- Vibration isolation

Installation is happening!

Seismic platform installed

Radon filter system

Chilled water loop

Inner lead and polyethylene shield

Plan is to start commissioning run in 2023!

SuperCDMS sensitivity: a broadband DM search

Traditional Nuclear Recoil:	iZIP, Background free	>5 GeV
Low Threshold NR:	iZIP, limited discrimination	>1 GeV
HV mode:	HV, no discrimination,	~ 0.3 - 10 GeV
Electron recoil:	HV, no discrimination,	${\sim}0.5~{\rm MeV}$ - $10~{\rm GeV}$
Absorption (Dark Photons, ALPs):	HV, no discrimination,	${\sim}1~{\rm eV}$ - 500 keV ("peak search")

SuperCDMS SNOLAB nuclear recoil projected sensitivity (arXiv:2203.08463)

Estimate based on 4-y exposure and current knowledge of bkg

Optimum interval (dashed) and profile-likelihood ratio (solid), (red-brown) Ge HV; (blue) Si HV; (mustard) Ge iZIP; (cyan) Si iZIP, (magenta short dashed) single neutrino sensitivity

10/24

How do we get there? Testing, R&D, parallel measurements

Not just installing SuperCDMS... the Cryogenic Underground TEst

- Close collaboration with SuperCDMS
- Facility background level similar to the Soudan campaign
- Running right now prototypes of HV SNOLAB detectors to study performances
- Capacity of testing 1 SuperCDMS detector tower
 - Si and Ge prototype detectors being tested now
 - Towers 1 + 2 arrive this fall
- Possibility of early science result!

Not just installing SuperCDMS... the HVeV program

- The HVeV are small gram scale R&D detectors:
 - Single electron-hole pair resolution devices!
- Ideal for studying charge transport in Si and Ge
 - Minimize charge leakage in all SuperCDMS devices
- Sensitivity to a variety of sub-GeV DM models with gram*day exposures
- Physics runs happening now in NEXUS (FNAL) test facility

PRD 102, 091101, 2020

HVeV program and the low energy excess

- Utilize the extreme resolution to study the low energy excess
- New publication comparing 0V, 60V and 100V data **PRD 105, 112006, 2022**
- Many clues all pointing to the production of few eV luminence events from the PCB around the detectors

New detector holder design with no PCB \rightarrow new data show strong reduction of quantized bkg above first electron-hole peak (analysis ongoing)

Understanding the Nuclear Recoil Scale: IMPACT

- Ionization yield $Y(E_{\text{Recoil}})$ is energy dependent and not well known at lower energies
- Necessary input for our understanding of the HV detector data

- Determination of the yield via measurement of the total phonon energy and kinematic measurement of the recoil energy via a coincident detection of the scattered neutron
- 55.7 keV neutrons beam at Triangle Universities Nuclear Laboratory
- Total phonon energy measured with Si HVeV detector at 100 V with ~ 3 eV resolution
- Set of liquid scintillator detectors coupled to 2-inch PMTs to measure scattered neutrons at various angles

Understanding the Nuclear Recoil Scale: IMPACT

- 1. Measurement of total phonon energy spectrum for coincidence events
- 2. Simulation of recoil energy spectrum for coincidence events
- Determine Y by fitting the simulation to the HV measurement

Example of fit, 100 eV Single e-h sensitivity for NR!

Paper will be out soon! Working towards a Ge HVeV measurement soon.

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

- Photoneutron sources: high rate gamma sources (88 Y and 124 Sb) on top of a 9 Be wafer to produce mono-energetic neutrons
- Neutrons irradiated 2 old-style Ge HV detectors, run at 70 and 25 V, at the end of Soudan campaign
- Full Geant4 simulation of neutron signal
- Electron recoil background spectrum dominated by Compton, modeled analytically and validated using source data without ⁹Be wafer

arXiv:2202.07043

Ionization yield extract with likelihood fit to

data using a linear generalization of the

standard Lindhard model

$$\begin{split} Y_r &= \frac{kg(\epsilon)}{1+kg(\epsilon)} \\ k(E_r) &= k_{low} + \frac{k_{high} - k_{low}}{E_{high} - E_{low}} (E_r - E_{low}) \end{split}$$

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

arXiv:2202.07043

Need for theoretical input!

Looking further away. Now is the right time to start planning for 5 years in the future

New possible directions for LDM searches at SuperCDMS - arXiv:2203.08463

Focus on detector improvements especially to improve phonon resolution, for SuperCDMS further bkg reduction is extremely expensive and time consuming:

- Smaller detectors sizes $(1 \text{ cm}^3, 10 \text{ cm}^3)$ with improved phonon energy resolution
- Alternative detector types
 - phonon iZIP (piZIP): iZIP electric field configuration, measures ionization yield by separating primary and NTL phonon components
 - 0V: simplified design, 1 phonon sensor, ideal for sub-GeV nucelon-coupled DM
- 3 upgrade detector performance scenarios with increasing maturity

					number	raw e	xposure
Detector			mass [kg]		of	[kg·yr]	
Type	Size	Dimensions	Ge	Si	Detectors	Ge	Si
SNOLAB	HV/iZIP	$\emptyset10~{\rm cm}$ $ imes$ 3.3 cm	1.4	0.61	12	54	23
	piZIP				6	27	12
10 cm^3	HV	$3 \times 3 \times 1.2 \text{ cm}^3$	0.057	0.025	36	6.6	2.9
	iZIP				24	4.4	1.9
	piZIP				12	2.2	1.0
	0V				144	26	12
1 cm^3	0V	$1 \times 1 \times 0.4 \text{ cm}^3$	0.0021	0.00093	144	1.0	0.42

Assumptions in the projections

Forecasted sensitivity for NRDM

arXiv:2203.08463

Forecasted sensitivity for ER recoil LDM

arXiv:2203.08463

Forecasted sensitivity for ALPs and dark photons

arXiv:2203.08463

Conclusion

- Exciting time ahead!
- The SuperCDMS SNOLAB Project is on track
 - Detector fab is complete and SNOLAB infrastructure is well advanced
 - ▶ Testing and characterization is happening at test facilities
 - The parameter space that SuperCDMS will explore is world-leading and unique
- First results on the nuclear recoil scale at low energies
- Intense and fruitful R&D effort ongoing to already develop the detector technology for the future
- Multiple avenues are being explore to push the sentitivity even further!

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

250

120 140

Total Phonon Energy (keV)

Forecasted sensitivity - assumptions table

arXiv: 2203.08463

			Detector Upgrade Scenario						
	Detector		A		В		С		
Quantity	Туре	Size	Si	Ge	Si	Ge	Si	Ge	
phonon energy resolution [eV]	0V	1 cm ³	0.5		0.13	0.28	0.013		
		10 cm ³	2.5	4.5	0.7	1.5	0.07	0.14	
	HV	10 cm ³	3.3	4.5					
		SNOLAB-sized	12.	21.	4.	6.	0.6	0.7	
	iZIP	10 cm ³	2.5	4.5	0.7	1.5			
		SNOLAB-sized	12.	21.	3.4	6.			
	piZIP	10 cm ³	3.3	4.5	1.2	1.5	0.19	0.21	
		SNOLAB-sized	12.	21.	4.	6.	0.6	0.7	
ionization energy resolution [eV _{ee}]	iZIP	10 cm ³	50.	60.	17.	17.			
	piZIP	10 cm ³	8.	11.	3.	6.	0.5	0.5	
		SNOLAB-sized	30.	53.	10.	15.	1.5	1.8	
ionization leakage current [Hz/gm]	HV			1.0		0.1		0.01	
impact ionization probability	HV			0.02		0.01		0.01	
charge trapping probability	HV			0.01		0.01		0.001	

Forecasted sensitivity for NRDM

arXiv:2203.08463

Forecasted sensitivity for ERDM

arXiv: 2203.08463

5/6

Summary table

arXiv:2203.08463

		Science Goals Accessible with Detector Upgrade Scenario						
Detector		А		В		С		
Туре	Size	Si	Ge	Si	Ge	Si	Ge	
0V	1 cm ³	1, 3, 4, <u>5</u>	4	1, 3, 4, <u>5</u>	3, <u>4</u>	1		
	10 cm ³	1, 4	1, 4	1, 3, 4, <u>5</u>	1, 3, 4	1, 3, 4	1, 3, <u>4</u>	
HV	10 cm ³	2	2					
	SNOLAB-sized	3, 4, <u>5</u>	3, 4, <u>5</u>	2, 3, 4, <u>5</u>	2, 3, 4, <u>5</u>	3, 4, <u>5</u>	3, <u>4</u> , <u>5</u>	
iZIP	10 cm ³		2		2			
	SNOLAB-sized				2			
piZIP	10 cm ³	2	2	2	2	2	2	
	SNOLAB-sized	2	2	2	2	2	2	

Table 4 from 2203.08463: Relevance of various detector types, sizes, and upgrade scenarios to science goals.

- Colour indicates maturity (e.g. bright green = already demonstrated)
- Numbers indicate
 science goals
 - 1: sub-GeV NRDM
 - · 2: GeV scale NRDM
 - 3: DP DM
 - 4: ALP DM
 - 5: LDM
- iZIP and piZIP detectors only address GeV scale NRDM