The Scintillating Bubble
Chamber

Ken Clark
Queen’s University

" Arthur B I\/\cDona\d

ticle Physic




Bubble Chambers

e | ong history with particle
ohysics, and even with
dark matter

e Particle interaction causes

nucleation In superheated
fluio

® [his grows into a visible
(and detectable) bubble

/

e Chamber can then be

recompressed and ready
for the next event
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1heory,
Graphically

e At high pressure
the medium Is
stable in the
Iquid state

~ Gibbs potential (arb. units)

HIgh Pressure

Density (arb. units)
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1heory,
Graphically

 As the pressure
S lowered, this
Decomes
metastable, with
a potential
threshold to
OVEercome
before changing
state

~ Gibbs potential (arb. units)

HIgh Pressure

L ow Pressure

Density (arb. units)
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1heory,
Graphically
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Bubble Chambers \Work"?

e Detector Is made sensitive
Dy depressurizing
chamber

e Use video for trigger,
acoustically monitor as
well

® A trigger causes
oressurization to force
pback into liquid state




Why Use Bubble Chambers for DM/
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Why Use Bubble Chambers for DM/
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SO... how do we lower the threshold?
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....... e |n a PICO style bubble
................ chamber there isn't a good
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N e Obviously leads to the
—— significant turn-up at lower
PICO-60 C F, — WIMP masses
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FIG. 7. The 90% C.L. limit on the SD WIMP-proton cross .

section from the profile likelihood analysis of the PICO-60 I I late rI a‘ Can h e‘ p

Cs3Fs combined blind exposure plotted in thick maroon, along "
with limits from the first blind exposure of PICO-60 Cs3F'g

(thick blue) [14], as well as limits from PICO-60 CF3I (thick

red) [11], PICO-2L (thick purple) [10], PICASSO (green

band) [20], SIMPLE (orange) [21], PandaX-II (cyan) [46],

IceCube (dashed and dotted pink) [47], and SuperK (dashed

and dotted black) [48, 49]. The indirect limits from IceCube

and SuperK assume annihilation to 7 leptons (dashed) and b

quarks (dotted). Additional limits, not shown for clarity, are W
set by LUX [51] and XENONI1T [53] (comparable to PandaX- &Y
IT) and by ANTARES [54, 55] (comparable to IceCube).
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Back to the past

e \When Glaser was
investigating
bubble chambers,
he made some
INnteresting finds

Table 1

Major bubble chambers used in high-energy physics®.

H2 Dz N@/Hz

C3Hg, Freon, LXe

US chambers (total > 50)
Berkeley

2" 4" 6". 10". 15", 25, 72"

UM LXe
LRL 50 ¢cm, 10"

SLAC 157, 40°
BNL 30/31", 80", 84", 15 c¢m, 170 |
7" (3.9 Mpx)
Argonne 30" (4.7 Mpx), 307, 12’ UM 40
12" (7 Mpx)
Fermilab 15" (2.9 Mpx) 15’ 15 Tohoku (Holographic)

UW 30" [Scotchlite]

European chambers (total > 50)

German
French
British
Russian

CERN

85 cm (6.3 Mpx) 85 cm 85 cm

80 cm (16 Mpx)

150 cm

Ludmilla Ludmilla?
Mirabelle (3.3 Mpx) 30 cm, 2 m (40 Mpx) 2m Mirabelle?
BEBC (6.3 Mpx) BEBC BEBC

LEBC (5.2 Mpx triggered)

BP3, Gargamelle (4.7 M)
Oxford He

I m 2m, SKAT

ITEP He, 700 1 LXe
HOBC

BEBC: Big European Bubble Chamber; LEBC: Lexan Bubble Chamber; HOBC: Holographic Bubble Chamber; Gargamelle: Heavy Liquid Bubble Chamber; Ludmilla: Russian

Heavy Liquid Bubble Chamber; Mirabelle: Bubble Chamber built in Saclay/France; Mpx: million pictures, UM: U. Michigan Heavy Liquid and Liquid Xe Bubble Chambers. Data
in round brackets () give the number of pictures taken with a chamber, those in straight brackets special features of the chambers.

* Adopted from Gert G. Harigel, in “30 Years of Bubble Chamber Physics” (Bologna 2003); Ref. [38].

History of the bubble chamber and related active- and internal-target nuclear tracking
detectors, F.D. Becchetti, NIMA 784 (2015) 518-523
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Back 1o the pas

Phys. Rev. 102, 586 (1956

S

e |[n 1956, Glaser made a xenon
bubble chamber

e NO bubbles in pure xenon
even at 1keV threshold with

gamma source

e Normal production in 98%
xenon + 2% ethylene
scintillation completely
guenched

e Scintillation suppresses
obubble nucleation ("

ueen’s
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How will we do this?
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How will we do this?

e Roughly 10kg of argon

e SIPMs used for scintillation
detection

e Much of the Internal detall
modelled on PICO 500

e “Only” added challenge is to
keep It cold

~
' | M Piezo

e 850nm LED
1 VUV SIPM

. TS Evaporator

130 K

90 K

.
J



How will we do this?

e Roughly 10kg of argon

e SIPMs used for scintillation
detection

e Much of the Internal detall
modelled on PICO 500

e “Only” added challenge is to
keep It cold

Feedthroughs
Cryocooler
Camera
Thermosyphon viewports
condensers
HDPE castle

SiPM panels

Fused silica vessel

Thermosyphon
YP & LAr volume

evaporators

Bellows Pressure vessel
Cryogenic valve Vacuum jacket

Hydraulic Cylinder
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Why do we think this will work"?

Jume from acoustic onset [ms]

50 0 s 100
Time from PMT trigger [ns]

150

200

e [his has been tried with a
very small xenon bubble
chamber at Northwestern

e Results were successtul,
and backed up what Glaser
had suspected
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Why do we think this will work"
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e Actual data from the

chamber filled with
| Xe

e Only found upper
Imits as far as

threshold could be
pushed




T hreshold eftects

® | owering the
threshold opens up
significant area in
the low mass
search

o Note this assumes
only CEVNS
backgrounds and
10kg-year live time
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Limit Projections e _ 
Gradient of Xe discovery limit, n = —(dlnc/d1n MT) ™
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Further Advantages

e NRs make bubbles with
coincident scintillation

e Scintillation detection
threshold above bubble
threshold

e (~1phd/5 keWr

e Useful as veto of high-energy
events

o \\Ve’ll come back to this a bit
later. ..
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.. Collaboration Plan

2) Build and install
detector at SNOLAB

1) Build and

for DM search
COmMmMmISSION
detector at
Fermilab for
threshold . 3) Upgrade and

testing

Mexico

iINstall detector from
1) at a reactor for
neutrino studies

Guatemala

20




Wait... neutrino studies?

* [he removal of backgrounds (and the lowered threshold) make this a
good testbed for neutrino scattering studies

Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic
neutrino-nucleus scattering reactor experiments

L. J. Flores''* and Eduardo Peinado’:'
R  Covers the potential sensitivity of SBC to the weak

E. Alfonso-Pita,":! K. Allen, M. Baker,® E. Behnke.2 M. Bressler,* K. Clark,® R. Coppejans,®7 C. Cripe,? mixing angle, neutrino magnetic moment, and a

M. Crisler,® C. E. Dahl.%® A. de St. Croix,” D. Durnford.® P. Giampa,9 O. Harris,'? P. Hatch,® H. Hawley-Herrera,5 . ) .
C. M. Jackson,!' Y. Ko,* C. B. Krauss,® N. Lamb,* M. Laurin,'? I. Levine,? W. H. Lippincott,’® R. Neilson,* S. Pal,? Ilght Z ga uge bOSOn mEdIatOr

M.-C. Piro,? Z. Sheng,® E. Vazquez-Jauregui,!-**: % T. J. Whitis,’3 S. Windle,* R. Zhang,'® and A. Zuniga-Reyes’ ° Col |aborat|0n paper Ied by theonsts at UNAM
(SBC Collaboration)

The physics reach of a low threshold (100 €V) scintillating argon bubble chamber sensitive to Coher-
ent Elastic neutrino-Nucleus Scattering (CEvNS) from reactor neutrinos is studied. The sensitivity
to the weak mixing angle, neutrino magnetic moment, and a light Z’ gauge boson mediator are
analyzed. A Monte Carlo simulation of the backgrounds is performed to assess their contribution to
the signal. The analysis shows that world-leading sensitivities are achieved with a one-year exposure
for a 10 kg chamber at 3 m from a 1 MW, research reactor or a 100 kg chamber at 30 m from a

y r i o 23T N . $ » W b+ 1 » » 1 ST » > > 1 2T ' 4 . . . - . .
2000 MW, power reactor. Such a detector has the potential to become the leading technology to New Physics searches in a low threshold scintillating argon bubble chamber measuring

study CEvNS using nuclear reactors. . . . .
coherent elastic neutrino-nucleus scattering in reactors

PhyS Rev.D 103, 091301 (2021) E. Alfonso-Pita,’* L. J. Flores,* ' Eduardo Peinado,''? and E. Véazquez-Jauregui'-*

' Instituto de Fisica, Universidad Nacional Auténoma de México, A.P. 20-364, Ciudad de México 01000, México.

")chcnold_qico Nacional de México/ITS de Jerez, C.P. 99863, Zacatecas, Mérico.

The sensitivity to New Physics of a low threshold scintillating argon bubble chamber measuring

° 1 1 1 1 coherent elastic neutrino-nucleus scattering in reactors is reported. Namely, light scalar mediators,
Stuady of CEVNS including sterile neutrino

sterile neutrino oscillations, unitarity violation, and non-standard interactions are studied. The

'” H H H - I - results indicate that this detector could be able to set stronger constraints than current limits set
OSC| atlonsl u n Ita rIty VI O atlonl non Sta nda rd by the recent COHERENT measurements. Considering the best scenario, a 100 kg detector located
30 m from a 2000 MW,;, reactor, a sterile neutrino search would cover most of the space parameter

L ] .
I nte ra Ctlo ns allowed from the reactor anti-neutrino anomaly fit. Unitarity violation studies could set constraints
on a1 more stringent than the current oscillation experiments fit. A low threshold argon detector

¢ ertten by theo r|StS at U NAM with very low backgrounds has the potential to explore New Physics in different scenarios and set
competitive constraints.
arXiv:2203.05982
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EXperiment status
-lnm‘&‘

'

6/8 engineering notes
have passed peer
review

1/2 safety
walkthroughs
complete

11/11 pressure tests
passed

Mechanical and
Cryogenic
commissioning next




EXperiment status

®* [nner assembly
construction complete

e (Cryogenic seal tests
currently happening

e Assembly to be sent
to Fermilab at
completion of FNAL
mechanical and
cryogenic
commissioning




EXperiment status

®* [nner assembly
construction complete

e (Cryogenic seal tests
currently happening

e Assembly to be sent
to Fermilab at
completion of FNAL
mechanical and
cryogenic
commissioning




EXperiment status

® |[nner assembly
construction complete

e (Cryogenic seal tests
currently happening

e Assembly to be sent
to Fermilab at
completion of FNAL
mechanical and
cryogenic
commissioning

N4
NS K
&

‘D
A




Projected timeline

2022 2023 2024

WBS5-0 S m

WBS 6 - Sci S m
WBS 7 - A S m
WBS 8 - S

nnnnnnnnn

e (Green shown is projected schedule, orange represents contingency (obviously
estimated)

e Primary point is that by May 23 should be ready to install
e SNOLAB inaccessibility shown in red
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1 )) .
Bonus” physics!
@- QB B Piezo
- ) i IR LED
lm = VUV SiPM
CF4 - A!{- .
.1 10ppm Xe (130 K
| | PTFE (VUV
. E— - Reflector /
IR Diffuser)
90 K

o SBC uses CF4 as a hydraulic fluid

e [esting has progressed with
validating components in liquid
CF4, iIncluding SIPMs

e At this point, there was a bit of a
surprise

27




(

‘Bonus” pnysics!
Alpha data (threshold=1PE)

e Fvidence that alphas ' —— alpha
. 3 241 Iph 57
can be seen in the 1o ~ “*“Am, LCF, o o
hydraulic fluio

 Redesigned the SiPMs & 10 \A@
to have a few looking = N
SUtward 5 122-keV y, LCF, &

e Potential for veto N
iInformation from the
surrounding flulo 100 , , , ,

0 10 20 30 40

Area (PE)

5 3
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Conclusion

e \/ery cool physics can be done with our detectors

o Always looking for interested parties!
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How Do Bubble Chambers \Work"?

o Start with a bubble in a liquid
e |nthermal equilibrium, so T = Tp

* Pyis then roughly the vapour
oressure at temperature T, and
Po>P), SO the bubble shoulo

expand

31




How Do Bubble Chambers \Work"?

o Start with a bubble in a liquid
e |nthermal equilibrium, so T = Tp

* Pyis then roughly the vapour
oressure at temperature T, and
Po>P), so the bubble should
expand... If there were no
surface tension

32




How Do Bubble Chambers \Work"?

® |nclude pressure from surface
tension Ps = 20/r

e [his means the bubble will grow

only If:
P, > P, + P,

and

20
P, — P,

r >

e \Which we call the critical radius rc

33

@




Calculation of Threshold

e SO how is the threshold energy calculated®

do
E, = 47?1”3 (0 — T ’ﬁ] ) Surface energy
H

41

_|_T 3pb(hb — hy) Bulk energy
4

—?ﬂrg(Pb — P)) Reversible work

e \Vhere p Is the density and h the specific enthalpy
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Calculation of Threshold

e SO how is the threshold energy calculated®

do
E, = 47?1”3 (0 — 1 ’ﬁ] ) Surface energy
H

41

_|_T 3pb(hb — hy) Bulk energy
4

—?ﬂrg(Pb — P)) Reversible work

e \Vhere p Is the density and h the specific enthalpy
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1.53 keV

1.81 keV

0.15 keV

3.19 keV



