The Scintillating Bubble Chamber

Ken Clark Queen's University

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Bubble Chambers

- Long history with particle physics, and even with dark matter
- Particle interaction causes nucleation in superheated fluid
- This grows into a visible (and detectable) bubble
- Chamber can then be recompressed and ready for the next event

<u>Theory,</u> <u>Graphically</u>

 At high pressure the medium is stable in the liquid state

units) Gibbs potential (arb.

Density (arb. units)

<u>Theory</u>, <u>Graphically</u>

• As the pressure is lowered, this becomes metastable, with a potential threshold to overcome before changing state

Density (arb. units)

<u>Theory,</u> <u>Graphically</u>

• The potential step is controllable with pressure (or temperature) providing a variable threshold

units) Gibbs potential (arb. $\mu_{\rm v}$

Density (arb. units)

5

- Detector is made sensitive by depressurizing chamber
 - Use video for trigger, acoustically monitor as well
 - A trigger causes pressurization to force back into liquid state

Why Use Bubble Chambers for DM?

 10^{6}

- The variable threshold has some advantages, and could be useful
- The real advantage is the gamma insensitivity

Expected Rate (events/year) 10^{4} 10^{2} 10^{0}

 10^{-2}

Why Use Bubble Chambers for DM?

 10^{6}

- The variable threshold has some advantages, and could be useful
- The real advantage is the gamma insensitivity... at "higher" thresholds

Expected Rate (events/year) 10^{4} 10^{2} 10^{0}

 10^{-2}

So... how do we lower the threshold?

FIG. 7. The 90% C.L. limit on the SD WIMP-proton cross section from the profile likelihood analysis of the PICO-60 C_3F_8 combined blind exposure plotted in thick maroon, along with limits from the first blind exposure of PICO-60 C_3F_8 (thick blue) [14], as well as limits from PICO-60 CF₃I (thick red) [11], PICO-2L (thick purple) [10], PICASSO (green band) [20], SIMPLE (orange) [21], PandaX-II (cyan) [46], IceCube (dashed and dotted pink) [47], and SuperK (dashed and dotted black) [48, 49]. The indirect limits from IceCube and SuperK assume annihilation to τ leptons (dashed) and *b* quarks (dotted). Additional limits, not shown for clarity, are set by LUX [51] and XENON1T [53] (comparable to PandaX-II) and by ANTARES [54, 55] (comparable to IceCube).

- In a PICO style bubble chamber there isn't a good way to do this
- Obviously leads to the significant turn-up at lower WIMP masses
- Changing the target material can help...

Back to the past

When Glaser was investigating bubble chambers, he made some interesting finds

Table 1 Major bubble chambers used in high-energy physics^a.

	H ₂	D ₂	Ne/H ₂	C ₃ H ₈ , Freon, LXe
US chambers (total > 50)				
Berkeley	2", 4", 6", 10", 15", 25", 72"			UM LXe LRL 50 cm, 10"
SLAC	15″, 40″			
BNL	30/31", 80", 84",			15 cm, 170 l
	7' (3.9 Mpx)			
Argonne	30" (4.7 Mpx),		30", 12'	UM 40"
	12' (7 Mpx)			
Fermilab	15' (2.9 Mpx)	15′	15′	Tohoku (Holograpl
	UW 30" [Scotchlite]			
European chambers (total > 50)				
German	85 cm (6.3 Mpx)	85 cm	85 cm	
French	80 cm (16 Mpx)			BP3, Gargamelle (4
British	150 cm			Oxford He
Russian	Ludmilla		Ludmilla?	1 m, 2 m, SKAT
				ITEP He, 700 1 LXe
CERN	Mirabelle (3.3 Mpx) 30 cm, 2 m (40 Mpx)	2 m	Mirabelle?	HOBC
	BEBC (6.3 Mpx)	BEBC	BEBC	
	LEBC (5.2 Mpx triggered)			

BEBC: Big European Bubble Chamber; LEBC: Lexan Bubble Chamber; HOBC: Holographic Bubble Chamber; Gargamelle: Heavy Liquid Bubble Chamber; Ludmilla: Russian Heavy Liquid Bubble Chamber; Mirabelle: Bubble Chamber built in Saclay/France; Mpx: million pictures, UM: U. Michigan Heavy Liquid and Liquid Xe Bubble Chambers. Data in round brackets () give the number of pictures taken with a chamber, those in straight brackets special features of the chambers.

^a Adopted from Gert G. Harigel, in "30 Years of Bubble Chamber Physics" (Bologna 2003); Ref. [38].

History of the bubble chamber and related active- and internal-target nuclear tracking detectors, F.D. Becchetti, NIMA 784 (2015) 518-523

Back to the past

Phys. Rev. 102, 586 (1956)

- In 1956, Glaser made a xenon bubble chamber
 - No bubbles in pure xenon even at 1keV threshold with gamma source
 - Normal production in 98% xenon + 2% ethylene (scintillation completely quenched)
- Scintillation suppresses bubble nucleation (?)

g

How will we do this?

- Roughly 10kg of argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- "Only" added challenge is to keep it cold

How will we do this?

- Roughly 10kg of argon
- SiPMs used for scintillation detection
- Much of the internal detail modelled on PICO 500
- "Only" added challenge is to keep it cold

Why do we think this will work?

- This has been tried with a very small xenon bubble chamber at Northwestern
- Results were successful, and backed up what Glaser had suspected

Why do we think this will work?

- Actual data from the chamber filled with LXe
- Only found upper limits as far as threshold could be pushed

<u>Threshold effects</u>

- Lowering the threshold opens up significant area in the low mass search
- Note this assumes only CEvNS backgrounds and 10kg-year live time

Limit Projections

- If you wanted a more complicated plot, we've got you covered there too
- Note the lower threshold (100eV) is assumed
- Also shown is a "potential" next step

Further Advantages

- NRs make bubbles with coincident scintillation
- Scintillation detection threshold above bubble threshold
 - (~1 phd / 5 keVr)
- Useful as veto of high-energy events
- We'll come back to this a bit later...

Collaboration Plan

2) Build and install detector at SNOLAB for DM search

3) Upgrade and
install detector from
1) at a reactor for
neutrino studies

Wait... neutrino studies?

The removal of backgrounds (and the lowered threshold) make this a good testbed for neutrino scattering studies

Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments

> L. J. Flores^{1,*} and Eduardo Peinado^{1,†} (CE ν NS Theory Group at IF-UNAM)

E. Alfonso-Pita,^{1,‡} K. Allen,² M. Baker,³ E. Behnke,² M. Bressler,⁴ K. Clark,⁵ R. Coppejans,^{6,7} C. Cripe,² M. Crisler,⁸ C. E. Dahl,^{6,8} A. de St. Croix,⁵ D. Durnford,³ P. Giampa,⁹ O. Harris,¹⁰ P. Hatch,⁵ H. Hawley-Herrera,⁵ C. M. Jackson,¹¹ Y. Ko,³ C. B. Krauss,³ N. Lamb,⁴ M. Laurin,¹² I. Levine,² W. H. Lippincott,¹³ R. Neilson,⁴ S. Pal,³ M.-C. Piro,³ Z. Sheng,⁶ E. Vázquez-Jáuregui,^{1,14,§} T. J. Whitis,¹³ S. Windle,⁴ R. Zhang,¹³ and A. Zuñiga-Reyes¹ (SBC Collaboration)

> The physics reach of a low threshold (100 eV) scintillating argon bubble chamber sensitive to Coherent Elastic neutrino-Nucleus Scattering ($CE\nu NS$) from reactor neutrinos is studied. The sensitivity to the weak mixing angle, neutrino magnetic moment, and a light Z' gauge boson mediator are analyzed. A Monte Carlo simulation of the backgrounds is performed to assess their contribution to the signal. The analysis shows that world-leading sensitivities are achieved with a one-year exposure for a 10 kg chamber at 3 m from a 1 MW_{th} research reactor or a 100 kg chamber at 30 m from a 2000 MW_{th} power reactor. Such a detector has the potential to become the leading technology to study $CE\nu NS$ using nuclear reactors.

> > Phys. Rev. D 103, 091301 (2021)

 Study of CEvNS including sterile neutrino oscillations, unitarity violation, non-standard interactions

Written by theorists at UNAM

- Covers the potential sensitivity of SBC to the weak mixing angle, neutrino magnetic moment, and a light Z' gauge boson mediator
- Collaboration paper led by theorists at UNAM

New Physics searches in a low threshold scintillating argon bubble chamber measuring coherent elastic neutrino-nucleus scattering in reactors E. Alfonso-Pita,^{1,*} L. J. Flores,^{2,†} Eduardo Peinado,^{1,‡} and E. Vázquez-Jáuregui^{1,§} ¹Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Ciudad de México 01000, México. ²Tecnológico Nacional de México/ITS de Jerez, C.P. 99863, Zacatecas, México. The sensitivity to New Physics of a low threshold scintillating argon bubble chamber measuring coherent elastic neutrino-nucleus scattering in reactors is reported. Namely, light scalar mediators, sterile neutrino oscillations, unitarity violation, and non-standard interactions are studied. The results indicate that this detector could be able to set stronger constraints than current limits set by the recent COHERENT measurements. Considering the best scenario, a 100 kg detector located

30 m from a 2000 MW_{th} reactor, a sterile neutrino search would cover most of the space parameter allowed from the reactor anti-neutrino anomaly fit. Unitarity violation studies could set constraints on α_{11} more stringent than the current oscillation experiments fit. A low threshold argon detector with very low backgrounds has the potential to explore New Physics in different scenarios and set competitive constraints.

arXiv:2203.05982

- 6/8 engineering notes have passed peer review
- 1/2 safety
 walkthroughs
 complete
- 11/11 pressure tests passed
- Mechanical and Cryogenic commissioning next

- Inner assembly construction complete
- Cryogenic seal tests currently happening
- Assembly to be sent to Fermilab at completion of FNAL mechanical and cryogenic commissioning

- Inner assembly construction complete
- Cryogenic seal tests currently happening
- Assembly to be sent to Fermilab at completion of FNAL mechanical and cryogenic commissioning

- Inner assembly construction complete
- Cryogenic seal tests currently happening
- Assembly to be sent to Fermilab at completion of FNAL mechanical and cryogenic commissioning

Projected timeline

"Bonus" physics!

- SBC uses CF₄ as a hydraulic fluid
- Testing has progressed with validating components in liquid CF₄, including SiPMs
- At this point, there was a bit of a surprise

"Bonus" physics!

- Evidence that alphas can be seen in the hydraulic fluid
- Redesigned the SiPMs
 to have a few looking
 outward
- Potential for veto information from the surrounding fluid

10³

10²

101

10°

0

Conclusion

- Always looking for interested parties!

• Very cool physics can be done with our detectors

- Start with a bubble in a liquid
- In thermal equilibrium, so $T_1 = T_k$
- P_b is then roughly the vapour pressure at temperature T, and P_b>P_l, so the bubble should expand

	Pi, Ti
b	P_b, T_b

- Start with a bubble in a liquid
- In thermal equilibrium, so $T_1 = T_k$
- P_b is then roughly the vapour pressure at temperature T, and P_b>P_l, so the bubble should expand... if there were no surface tension

	PI, TI
b	Ps Pb, Tb

- Include pressure from surface tension $P_s = 2\sigma/r$
- This means the bubble will grow only if:

$$P_b > P_l + P_s$$

and

$$r > \frac{2\sigma}{P_b - P_l}$$

 \bullet Which we call the critical radius r_c

Calculation of Threshold

• So how is the threshold energy calculated?

$$E_T = 4\pi r_c^2 \left(\sigma - T \left[\frac{d\sigma}{dT} + \frac{4\pi}{3} r_c^3 \rho_b (h_b - h_b) - h_c \right] \right)$$
$$-\frac{4\pi}{3} r_c^3 (P_b - P_l)$$

• Where ρ is the density and h the specific enthalpy

-Surface energy

 h_l Bulk energy

Reversible work

Calculation of Threshold

• So how is the threshold energy calculated?

$$E_T = 4\pi r_c^2 \left(\sigma - T \left[\frac{d\sigma}{dT} + \frac{4\pi}{3} r_c^3 \rho_b (h_b - h_b) - h_c \right] \right)$$
$$-\frac{4\pi}{3} r_c^3 (P_b - P_l)$$

• Where ρ is the density and h the specific enthalpy

