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\%/ WIKIPEDIA: Knower of all things

Pacific _ A qubit is a two-state (or two-level)
Northwest  Qutline quantum-mechanical system.

Dark matter and qubits?

Initial observations of an instrumentational relationship
= Work at LNGS
= MIT-PNNL
= Short history of quasiparticle poisoning

Interesting related results of radiation & qubits
= Wilen et al., Google, microfractures

Bringing it back to dark matter
= Particle-like dark matter...
= \Wave-like dark matter...
= Other related ideas...

Summary
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Northwest  Dark matter and qubits?

 Dark matter detectors:

= Several experiments employ (or plan to employ) superconducting sensors
v’ Particle-like dark matter: SuperCDMS
v Wave-like dark matter: ADMX, Haystack, DM Radio, SQUAD, ...

= Sensitive to naturally occurring ionization (cosmic rays and radioactivity)
v Mitigation: Operated in shields and deep underground

* Do quantum bits (qubits) share any of these features?
= As we will see... “Yes”
= But where does this lead?




% Key insight

Pacific grAl resonators

Northwest  The story begins... are very similar to
superconducting qubits

 Using high kinetic inductance granular aluminum (grAl) superconducting
resonators as a sensor for quasiparticle populations... while underground

Karlsruhe ( 07/2018 ) Rome ( 07/2019, 11/2019 ) Gran Sasso ( 04/2019 )
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:i{/ Superconducting quantum bits (qubits)
Northwest  sense ionizing radiation

NATIONAL LABORATORY

« Operation of superconducting transmon qubits under variable ionizing

radiation exposure (°*Cu source with T., = 12.7 hours)
= Hypothesis: lonizing radiation “poisons” transmon via superconducting quasiparticles
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A.P. Vepsalainen et al., Nature 584, pgs 551-556 (2020)



Pfiﬁc Quasiparticle poisoning is nothing new...

Northwest  Nejther is ionization radiation as a cause...

NATIONAL LABORATORY
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Northwest  Jonizing radiation & superconducting qubits
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Northwest  Jonizing radiation & superconducting qubits
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* Resolving catastrophic
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oot Detour #3:
Northwest  Not just ionizing radiation & superconducting qubits
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Bacific New ideas and direct search methods
Northwest  for lighter, sub-GeV, particle dark matter

| want to fry*™* to get this talk back to a dark matter focus...

« Revelatory statement up-front:
* I'm not aware of anyone building qubit instruments to detector particle-like dark matter

* However:
= There is great synergy between particle-like dark matter sensors and qubits
* There are proposals to use qubits in detection of wave-like dark matter

= |'ll try to cover both and some!

** My continuing interest is in quantum error correction... but | will not digress...
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% Synergy #1

Pacific

Northwest  Superconducting device design and modeling

Geant 4 (G4CMP) simulation of phonon transport in silicon chip

1g

« Measurements and ool
Simulations of Athermal e o}
Phonon Transmission from “-j
Silicon Absorbers to os
Aluminum Sensors R s
= M. Martinez et al., / G4CMP modeling parameters and measured KID response
= Phys. Rev. Applied 11, 064025 e e
(2019)
Chip model £ 7% e 5

transmission coefficients
Tsisa and Tgjses

i I “Grids” of interface phonon
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Not qubits! - Four kinetic inductance devices (KIDs) % Energy absorption efficiency, 7 n (%) 1
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Synergy #1.5

* Phonon transport & quasiparticle proc

Superconducting device design and modeling

uction in chip-based cryogenic devices

Dark matter detector Qubit device
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Several parallels

Superconducting
circuit film \ quasiparticle
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quasiparticle gar
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Take advantage of equivalence to develop tools for
optimization of device performance:
» Fabricate & test devices with varying physical properties
* Model phonon & quasiparticle response with dark matter
detector Monte Carlo (G4CMP)
» Use results to optimize designs & develop science applications

G4CMP-inspired devices to measure phonon caustics

G4CMP-simulated phonon

Research plans (in progress): caustics pattern in silicon

* Measurement of phonon caustics

» Characterization of novel sensors

» Expansion of quasiparticle processes
and tracking in G4CMP

» Device and sensor development for
HEP science applications

Caustics measurement chip layout
with SNIS’S phonon injector
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Instrumented with novel JAMKID sensors

Optical .

Image of
First
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< Synergy #2

Pacific

Northwest  Environmental disturbances & “Low-energy excesses”

« Concerns about low energy phenomenon (often quasiparticle producing)
= Low energy ionizing radiation (e.g., low-energy forward scattering)
= Secondary emission process (e.g., Cerenkov, transition, fluorescence)

Sources of Low-Energy Events

in Low-Threshold Dark-Matter Vacuum Vacuum
and Neutrino Detectors 4 i%‘; Dj_‘,%‘_i‘:,; <
™ P Du et a I.’ Cables Cables e p\h+e” U
Phys. Rev. X 12, 011009 &, 1\ mimiy herrioy €, 1\ ot phonens
(2022)
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« Searching for Dark Matter
with a Superconducting Qubit

= A.V. Dixit et al.,
Phys. Rev. Lett. 126, 141302
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Northwest  \Wave-like dark matter searches & Qubits

Key concepts:

« Use a cavity to convert axion
dark matter to photons

« Use a qubit coupled to cavity
to assess occupancy

(a) (1b)0 Qubit Excited State Probability
Readout : n=2 n=1 n=0
0.5 - T X ,'5;_
‘ ,

I
Transmon ® Dark Matter :

0.9

4.746 4.748 4.750
Frequency (GHz)

Storage
FIG. 1. Superconducting transmon qubit dispersively coupled
to high Q storage cavity. (a) Schematic of photon counting device
consisting of storage and readout cavities bridged by a transmon
qubit [29]. The interaction between the dark matter and electro-
magnetic field results in a photon being deposited in the storage
cavity. (b) Qubit spectroscopy reveals that the storage cavity
population is imprinted as a shift of the qubit transition frequency.
The photon-number-dependent shift is 2y per photon.
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Northwest  \Wave-like dark matter searches & “Quantum”

« HAYSTACK:

= Quantum state squeezing

* A quantum enhanced search
for dark matter axions
= K.M. Backes et al.,

Nature 590, 238-242
(2021)

* Squeezable quantum state:

= State with two non-commuting 102
quantum observables having
continuous eigenvalues

= For example: AXAY > -

a
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This result
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Concept \ Kinematics of a scattering event in a
° Detecting “miIIi-Charge” \/ _Paull trap. The charged particle y |
dark matter with trapped ) Impinges on the trapped electron with
ion-based ‘quitS’ g ) impact parameter b and velocity v.
£ T @X
3 e” ) Three step duty cycle:
@ 1. Initialize ion into ground state |0)
» Trapped Electrons and lons — 2. Wait a dwell time At
as Particle Detectors ' 3. Interrogate if ion is in excited state
*= Daniel Carney et al., - o
Phys Rev Lett. 127. 061804 DM captured and thermalized into the Earth DM virialized with the galaxy
) ’ ’ ’ 10° i T
(2021)
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Northwest ~Summary
« Quantum computing bits are very sensitive to “environmental disturbances”

* Recent observations have shown superconducting qubits are sensitive to
normal environmental levels of ionizing radiation

* This shows a synergy in device design and performance for superconducting detectors
= Currently this is driving modeling developments (Geant and G4CMP)

 Will qubits be used in direct detection of dark matter?
= Axions: Likely, yes.
= WIMPs: Less clear, but device-synergies are strong

* Regardless:
* Quantum sensing for direct detection of dark matter seems an inevitable approach
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