Experiments with Rare Isotopes - Recent (selected) Highlights -

R. Kanungo Saint Mary's University & TRIUMF, Canada

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

......

Experiments with Rare Isotopes - Recent (selected) Highlights -

R. Kanungo Saint Mary's University & TRIUMF, Canada

Stable Nucleus

Proton Number

2

Borromean nucleus

Rare Isotope

Neutron Halo

Neutron-rich matter

Neutron Number

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Why explore the rare isotopes ?

• What new features emerge with neutron-proton asymmetry ? New structures - Halo, Skin New Excitation modes Change of shells

• What is the nature of the nuclear force ? Tensor force Three-body force Pairing Interaction

• How do rare isotopes shape our Universe ? Nucleosynthesis (Talk : Hendrik Schatz) Structure information needed to constrain reaction rates Equation of state of asymmetric nuclear matter

• Rare isotopes test fundamental symmetries

1

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Rare Isotopes Facilities

Isotope Separator Online (ISOL)

In-flight - Projectile Fragmentation

Courtesy : H. Sakurai

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

State-of-the-art instruments peek into rare isotpes

Fragment Separators

BigRIPS (RIKEN), FRS (GSI), ARIS+A1900 (FRIB)

High Rigidity Spectrometers & Mass Separators

High Rigidity Spectrometers : SAMURAI (RIKEN), GLAD-R³B (GSI/ FAIR), S800 (FRIB)

Mass Separators/Spectrometers : DRAGON, EMMA (TRIUMF), SECAR (FRIB), SHARAQ (RIKEN)

High Luminosity Targets Active Targets : MAYA, ACTAR (GANIL), AT-TPC (FRIB), TEXAT (TAMU), SpecMAT (Leuven), MAIKo (Kyoto/RCNP)

Solid H₂ Target : IRIS (TRIUMF)

Liquid H₂ Target : MINOS (RIKEN

......

IUPAP WG9

Neutron detectors MoNA (FRIB), NeuLAND (GSI), NEBULA (RIKEN), BELEN (Europe), VANDLE (FRIB) DESCANT (TRIUMF), TexNEUT (TAMU)

Mass Measurements

Penning Traps: TITAN (TRIUMF), ISOLTRAP (CERN), CPT (ANL), LEBIT(FRIB), JYFLTRAP (Jyväskylä)

MR-TOF: RIKEN, GSI, TRIUMF

Storage Ring: ESR (GSI), Rare-RI Ring (RIKEN), HIRFL-CSR (Lanzhou)

 γ - spectroscopy High Resolution : GRETINA/GRETA, CLARION (USA), AGATA (Europe), GRIFFIN, TIGRESS (Canada)

High Efficiency : DALI2 (RIKEN)

High resolution charged particle spectroscopy HELIOS (ANL), Isolde Solenoidal Spectrometer (CERN), SOLARIS (FRIB)

Laser Spectroscopy COLLAPS, CRIS (CERN), **BECOLA** (FRIB)

ence Symposium, June 14-15, Washington, USA

Hunt for the nuclear landscape boundary

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Neutron balloon in neutron-rich nuclei

Exotic phenomena & nuclear force

Three-nucleon force

N. Tsunoda *et al.*, Phys. Rev. C (R) 2017

Neutron drip-line in O isotopes

Deformation

N. Tsunoda, T. Otsuka, K. Takayanagi et al., Nature, 2020

F to Mg : Strongly correlated valence neutrons -> ellipsoidal shape saturation marks the drip-line

Pairing Interaction

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Neutron Halo features & Disappearance of known nuclear shell gaps

¹¹Li: Halo n-n correlation

@ RIKEN-SAMURAI E/A = 246 MeV

 ${}^{11}{\rm Li}(p,pn){}^{10}{\rm Li}$

......

Y. Kubota, A. Corsi, G. Authelet et al., Phys. Rev. Lett. 125 (2020) 252501

Di-neutron localized at the surface i.e. *Core - nn distance* of ~ 3.6 fm

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

¹¹Li: Halo n-n correlation

 $^{11}\text{Li}(p, pn)^{10}\text{Li}$

Y. Kubota, A. Corsi, G. Authelet et al., Phys. Rev. Lett. 125 (2020) 252501

@ RIKEN-SAMURAI

Di-neutron localized at the surface i.e. *Core - nn distance* of ~ 3.6 fm

R. Kanungo

E/A = 246 MeV

¹¹Li: Halo n-n correlation

 $^{11}\text{Li}(p, pn)^{10}\text{Li}$

Y. Kubota, A. Corsi, G. Authelet et al., Phys. Rev. Lett. 125 (2020) 252501

@ RIKEN-SAMURAI

JSA

ν

π

ν

π

R. Kanungo

E/A = 246 MeV

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

A. Honma et al., JPS Proc. 14 (2017) 021010

......

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

R. Kanungo

28 A

30A1

32A

A. Honma et al., JPS Proc. 14 (2017) 021010

......

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

R. Kanungo

30A]

28 A

32A

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

R. Kanungo

 $30 \mathbf{A}$

32A

32A

30 A

N = 20, 28 shells vanish in a Borromean halo

Enlarged size of Ca isotopes beyond N = 28

M. Tanaka, M. Takechi, A. Homma et al., Phys. Rev. Lett. 124 (2020) 102501

Dip in the proton distribution radius for ${}^{48}Ca$ shows N = 28 is closed shell

The ⁴⁸Ca core is enlarged in neutron-rich Ca isotopes : *p* - *n* attractive force

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Here

R. Kanungo

@ RIKEN - BigRIPS

N = 28 shell closure breakdown

......

N = 28 shell closure breakdown

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

N = 28 shell closure breakdown

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

N = 8 vanishing @ Proton Drip Line ?

N = 8 shell gap quenching hinted at the proton drip-line from large deformation & lower energy of excited state

New shell gaps

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

⁸He : N = 6 new sub-shell

......

@ TRIUMF - IRIS

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

⁸He : N = 6 new sub-shell

......

@ TRIUMF - IRIS

⁸He : spherical in protons and deformed in neutrons

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

N = 14 new sub-shell

......

@ GSI - FRS

Dip in proton distribution radius shows new sub-shell gap @ N = 14

R. Kanungo

 ^{26}Mg

12

 ^{28}Mg

³⁰Mg

 ^{32}Mg

Quenching of proton sub-shell Z = 6

@ GSI - R³B/LAND

Hint of reduction in the Z = 6 sub-shell gap in neutron-rich nuclei

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

New shells N = 32, 34 50-53Sc @ NSCL - LEBIT 54-55Sc @ TRIUMF - TITAN

N = 32 shell gap seen in ⁵³Sc. No signature of N = 34 shell gap in ⁵⁵Sc

......

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

New shells N = 32, 3450-53 **SC (a)** NSCL - LEBIT **54-55 SC (a)** TRIUMF - TITAN

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

New shells N = 32, 34 ⁵²Ar

@ RIBF - MINOS+SAMURAI

H. Liu, A. Obertelli, P. Doornenbal et al., Phys. Rev. Lett. 122 (2019) 072502.

53 K(*p*,2*p*) 52 Ar

N = 32 does not show closed shell behaviour

N = 34 shell gap seen in ⁵²Ar from the high excitation energy

100

closed shell $5^{3}Sc$ $5^{5}Sc$ $5^{2}Ca$ $5^{4}Ca$ 32 34neutrons

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

New shells N = 32, 3452Ar

1

@ RIBF - MINOS+SAMURAI

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

34

closed shell

55Sc

54Ca

52Ar

34

▲ /=1

1 = 3

30

Nuclear structure and shell evolution impacts heavy element synthesis

N = 50 & 126 conventional shells

R. Kanungo

Doubly magic ⁷⁸Ni (N = 50)

@ RIKEN - BigRIPS

Calculations with three nucleon force explain data

⁷⁸Ni is doubly magic - N = 50 shell closure persists

R. Kanungo

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Doubly magic ⁷⁸Ni (N = 50)

@ RIKEN - BigRIPS

Calculations with three nucleon force explain data

100

⁷⁸Ni is doubly magic - N = 50 shell closure persists

N = 50 shell gap quenching beyond ⁷⁸Ni hinted - competing deformed & spherical shapes

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Doubly magic ⁷⁸Ni (N = 50)

@ RIKEN - BigRIPS

Calculations with three nucleon force explain data

⁷⁸Ni is doubly magic - N = 50 shell closure persists

N = 50 shell gap quenching beyond ⁷⁸Ni hinted - competing deformed & spherical shapes

Future studies on ⁷⁶Fe and ⁷⁴Cr needed to search for erosion for N = 50 shell gap

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

⁸⁰Ge (N = 48): Shape coexistence or not? controversy resolved

No shape coexistence in ⁸⁰Ge

Isomer states found around ¹⁰⁰Sn @ GSI - FRS Ion Catcher & MR-TOF

N = Z = 50 region

100 M

C. Homung et al. Phys. Lett. B 802 (2020) 135200

Data shows the need for core excitation across N = 50: Large Scale Shell model calculations

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Mass 99-101In towards 100Sn

@ ISOLDE - ISOLTRAP & MR-TOF

N = Z = 50 region

 $\Delta_{2n}(Z, N_0) = M_{\rm E}(Z, N_0 - 2) - 2M_{\rm E}(Z, N_0) + M_{\rm E}(Z, N_0 + 2)$

High precision mass measurements show trend of shell closure towards N = Z = 50

Ab initio predictions of odd-even staggering overall align well with data.

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

N = Z: Neutron-Proton (*p*-*n*) Isoscalar Pairing

@ GA NIL - AGATA

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Shell structure beyond N = 126 @ ISOLDE - Solenoidal Spectrometer

Z = 64 predicted to be the drip line of N = 127.

r-process neutron capture improbable with low angular momentum orbitals being unbound

Assumption : N = 126 shell closure persists. Future experiments will inform on this.

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

A.S.

Unbound Nuclei - open quantum systems

The hunt for tetraneutron

@ RIKEN - SHARAQ

K. Kisamori, S. Shimoura, H. Miya et al., Phys. Rev. Lett. 116 (2016) 052501

The first result of ⁴n from SHARAQ

Resonance reported $\sim 1 \text{ MeV}$

No

Yes

Theoretical Predictions

• Hiyama et al.

(too strong 3N force is needed)

- Shirokov et al.
- Gandolfi et al.

C.

(NSCM with JISP16 interaction)Yes(QMC with chiral interaction)

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

The hunt for tetraneutron

@ RIKEN - SHARAQ

K. Kisamori, S. Shimoura, H. Miya et al., Phys. Rev. Lett. 116 (2016) 052501

The first result of ⁴n from SHARAQ

Resonance reported $\sim 1 \text{ MeV}$

Yes

Theoretical Predictions

- Hiyama et al. No
 - (too strong 3N force is needed)
- Shirokov et al.
- Gandolfi et al.

......

(NSCM with JISP16 interaction)I. Yes(QMC with chiral interaction)

The question is still open on the existence of narrow resonance for tetraneutron

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

The hunt for tetraneutron

@ RIKEN - SHARAQ

K. Kisamori, S. Shimoura, H. Miya et al., Phys. Rev. Lett. 116 (2016) 052501

Resonance reported $\sim 1 \text{ MeV}$

No

Theoretical Predictions

- Hiyama et al.
 - (too strong 3N force is needed)
- Shirokov et al. Yes
- Gandolfi et al.
- (NSCM with JISP16 interaction) Yes (QMC with chiral interaction)

New Experiments to study exotic system @ RIKEN – RIBF

SHARAQ

- Shimoura et al. Revisit ⁴He(⁸He,⁸Be) ⁴n
- Miki et al.
 ³H(³H, ³He) ³n

SAMURAI

- Rossi et al.
 ⁸He(p,pα)⁴n
- Yang and Marques at al.
 ⁸He(p,2p)⁷H→t+⁴n
- Beaumel et al.
 ¹⁴Be(p, pα)⁶n+α

Courtesy : H. Sakurai

The question is still open on the existence of narrow resonance for tetraneutron

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

R. Kanungo

Superheavy hydrogen ⁷H

@ GANIL - MAYA

⁷H resonance observed ~ 0.7 MeV. ³H + 4n structure deduced.

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Beyond the proton drip-line ¹³F, ¹¹O

@ NSCL - HIRA

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Beyond the proton drip-line ¹³F, ¹¹O

@ NSCL - HIRA

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Effects of neutron skin

Equation of state of asymmetric nuclear matter

Neutron skin/halo oscillation

100

it is tempting to speculate that a loosely bound nucleus such as ¹¹Li will have a soft electric-dipole mode so that the reaction $^{11}\text{Li} \rightarrow ^{9}\text{Li} + 2n$ can be excited in Coulomb collisions at relatively low energy. (Non-resonant) dipole (E1) n enhancement due halo density tail. Soft dipole resonance Halo oscillation "Pygmy" dipole resonance Giant Dipole Neutron skin oscillation Resonance (traditionally oscillation of neutrons outside N = Z core)Strength **Excitation Energy**

Neutron skin/halo oscillation

1

Neutron skin/halo oscillation

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Charge radius ⁶⁸Ni (N=40)

@ ISOLDE - COLLAPS

S. Kaufmann, J. Simonis, S. Bacca et al. Phys. Rev. Lett. 124 (2020) 132502

Measured charge radius : challenge for chiral interactions

Ab initio calculations show a correlation between dipole polarizability and charge radius. 3p-3h correlation explains α_D & R_c.

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Charge radius $^{68}Ni (N = 40)$

......

@ ISOLDE - COLLAPS

S. Kaufmann, J. Simonis, S. Bacca et al. Phys. Rev. Lett. 124 (2020) 132502

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

R. Kanungo

15

 E_{γ} [MeV]

Charge radius $^{68}Ni (N = 40)$

@ ISOLDE - COLLAPS

@ INFN - LNS

0.2

0.15

0.1

0.05

5

10

15

 E_{γ} [MeV]

do/dE [mb/ MeV]

Excitation probability

S. Kaufmann, J. Simonis, S. Bacca et al. Phys. Rev. Lett. 124 (2020) 132502

R. Avigo, O. Wieland, A. Bracco et al. Phys. Lett. B 811 (2020) 135951

E1 strength at high Ey increases with increasing neutron number and has complex 3p-3h structure

Low-energy dipole resonances in neutron-rich heavy nuclei yet to be found

Dipole polarizability & neutron skin

Dipole polarizability (α_D)

$$lpha_{
m D}=rac{\hbar c}{2\pi^2}\intrac{\sigma_{
m abs}}{E_{
m x}^2}{
m d}E_{
m x}=rac{8\pi}{9}\intrac{{
m B(E1)}}{E_{
m x}}{
m d}E_{
m x}$$

J. Piekarewicz (2012)

-

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Neutron skin : bridge from

Equation of state of asymmetric

$$\frac{e(\rho, \delta) = e(\rho, 0) + c_{sym}(\rho)\delta^{2} + \mathcal{O}(\delta^{4})}{_{\beta = \frac{\rho_{n} - \rho_{p}}{\rho}}}$$
= energy per particle

11/21/2

Symmetry Energy is poorly constrained

$$c_{\rm sym}(\rho) = J - L\epsilon + \frac{1}{2}K_{\rm sym}\epsilon^2 + \mathcal{O}(\epsilon^3) \qquad \epsilon = (\rho_0 - \rho)/(3\rho_0)$$

$$L = 3\rho \partial c_{\rm sym}(\rho) / \partial \rho|_{\rho_0}$$

Neutron skin is strongly correlated with *L*

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Neutron skin (PREX & CREX @ JLab) : Symmetry energy

Parity violating electron scattering

PREX value of neutron skin of 208Pb is higher than other measurements

Higher value of L - Stiffer EOS

D. Adhikari *et al.*, Phys. Rev. Lett. 126 (2021) 172502

Reed et al., PRL (2021)

.....

Neutron skin (PREX & CREX @ JLab) : Symmetry energy

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

100

Neutron skin (PREX & CREX @ JLab) : Symmetry energy

Rare isotopes with thicker skins will be more sensitive constraints on 'L'

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Heavy Ion Collision : Symmetry energy

@ RIKEN - SAMURAI (S π RIT TPC)

Symmetry energy constraint at supra-saturation density

M. Kaneko et al., Phys. Lett. B. 822 (2021) 136681

G. Jhang et al., Phys. Lett. B. 813 (2021) 136016

......

Measured Double Ratio t/p agrees with AMD predictions of soft EOS ($L \sim 46$ MeV) The differences of transport models make it difficult to place a constraint on *L*.

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Summary & Outlook

Rare Isotopes are enabling to unveil the unknown fundamentals of visible matter in the Universe

Exotic forms of nuclei - unique quantum systems emerge far from the valley of stability

- Do nuclear halos occur in heavy nuclei?
- What new features of nucleon-nucleon pairing correlation emerge in neutron-rich nuclei?
- What new phenomena surface with nuclear halo & skin?
- Electron RI Scattering

Nuclear shells are mutating

- How do nuclear change in heavy nuclei?
- What is their influence on heavy element synthesis?
- What features of the nuclear force drive the shell evolution?

Neutron rich nuclei bring laboratory access to study behaviour of neutron-rich matter (EOS)

- Connecting neutron skin driven effects to constrain EOS of asymmetric nuclear matter
- Constraining the nuclear force defining from first principles : Excited States and Radii
 - Dynamical reaction probes
- Search for new physics fundamental symmetries in nature (not covered)
 - Radioactive Molecules as probes of symmetry violation
 - Electric Dipole Moment measurements (Ra, Rn)
 - Beta neutrino correlation

......

- Unitarity of the CKM matrix element
- Rare strange matter : RI Hypernuclei (not covered)

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Summary & Outlook An era of

An era of new discoveries awaits in the horizon

New generation facilities bring access to rare isotopes in colliding stars

Masses & Half-lives

Decay spectroscopy

Charged particle spectroscopy - shell structure

Safe Coulex - shell structure

Direct capture

New isotope search

Masses, Half-lives, Radii, Decay & In-beam γ spectroscop

- Knockout, Coulomb Disso. shell structure
- Transfer reactions shell structure

IUPAP WG9 Nuclear Science Symposium, June 14-15, Washington, USA

Summary & Outlook An era of new discoveries awaits in the horizon

New generation facilities bring access to rare isotopes in colliding stars

Thanks : RI Beam Facilities and the funding agencies for enabling the discoveries.

P. Roussel-Chomaz, T. Dickel, P. Doornenbal, G. Neyens, H. Sakurai, C. Scheidenberger

Thank you for your attention