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Studying Solar Neutrinos

pp CHAIN:
~99% of the Sun energy

4 p  α +2 e+ +2ν (E released ~ 26 MeV)

CNO CYCLE:
<1% of the sun energy

The Sun is powered by nuclear reactions occurring in its core

pp pep

8B

7Be



Studying Solar Neutrinos

Φ(proton-proton chain ν) 
~6 x10 10 ν /cm2/sec

Solar neutrino spectrum

• Neutrinos propagates from the core to the surface of the Sun in few seconds and 
then take only 8 minutes to reach the Earth;

 Unlike photons they provide a real time picture of the core of the Sun



Studying Solar Neutrinos

Φ(CNO ν) (blue dotted  line)
~5 x10 8 ν /cm2/sec

Solar neutrino spectrum

• Neutrinos propagates from the core to the surface of the Sun in few seconds and 
then take only 8 minutes to reach the Earth;

 Unlike photons they provide a real time picture of the core of the Sun

Φ(proton-proton chain ν) 
~6 x10 10 ν /cm2/sec



Studying Solar Neutrinos
The glorious past 

Astrophysics
Original motivation of the first experiments on 
solar ν was to test Standard Solar Model (SSM); 

Particle physics
Breakthrough! The solar neutrino problem 
provided one of the first hints towards  the 
discovery of neutrino oscillations;

Solar neutrino problem

Study of  the details of ν flux



Studying Solar Neutrinos
• Borexino has studied neutrinos from both the p-p chain and the CNO cycle;
• It has singled-out neutrinos from each different reactions (pp, pep, 7Be, 8B, CNO)

Probe details of the nuclear reactions in our Sun

R = 0.18 ± 0.02

Probe oscillations at different energies

Pee(pp)=0.57±0.10;    Pee(7Be)=0.53±0.05
Pee(pep)=0.43±0.11   Pee(8B)=0.37±0.08



The CNO cycle

• Sub-cycle I (involving CN) is dominant over 
sub-cycle II (involving NO);

• Neutrinos are emitted in two reactions:
13N  13C + e+ + νe  (Emax = 1.20 MeV)
15O  15N + e+ + νe (Emax = 1.74 MeV)

4 p  α +2 e+ +2ν 
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The CNO cycle

• The CNO cycle is sub-dominant in the Sun;

• It is dominant in more massive Stars;

4 p  α +2 e+ +2ν 
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The importance of studying CNO 

• The experimental proof of the existence of the CNO cycle is important in itself, 
since CNO is a crucial process for energy production in Stars and was never 
observed experimentally before 2020;

• First evidence (5σ) presented by Borexino in 2020;

Moreover

• Unlike the proton-proton chain, CNO depends directly on the content  of 
elements C - N  catalyzing the reaction;

Studying CNO will give direct experimental information on the solar metallicity;
9



The importance of studying CNO 

Two observables to cross-check SSM

Helioseismology
Study of the sound wave propagation on 
the surface of the Sun;

Solar neutrinos
Study of the flux of solar neutrinos from the 
different nuclear reactions

The solar metallicity puzzle

10

• Metallicity of the Sun: abundance of elements with Z>2 (C, N, O, Ne, Mg, Si, S,Ar, Fe…);
• Metallicity is obtained from spectroscopic measurement of the photosphere and from studies of 

meteorites;
• Metallicity is an input of the Standard Solar Models (SSMs are calibrated on it);
• Metallicity influences significantly the outputs of SSM (metallicity opacityTemperature)



The importance of studying CNO 

1998
GS98*: high 
metallicity
Uses 1D 
hydrodynamical 
model of solar 
atmosphere
Z/X= 0.023
Helioseismology: ok
*Grevesse et al.,Space
Sci.Rev. (1998)85]

2009
AGS09met*: low 
metallicity
Uses 3D 
hydrodynamical 
model of solar 
atmosphere
Z/X= 0.018
Helioseismology: ko
*A. Serenelli er al.,  Astr. 
J. 743,(2011)24

2022
MB22*: high 
metallicity
Uses 3D 
hydrodynamical 
model of solar 
atmosphere
Z/X= 0.0225

Helioseismology: ok
Magg et al., 
arXiV:2203.02255

2011
Caffau11*: low 
metallicity
Uses 3D 
hydrodynamical 
model of solar 
atmosphere
Z/X= 0.0209

Helioseismology: ko
*E.Caffau et al., Sol.Phys. 
(2011) 268

2021
AGG21*: low 
metallicity
Uses 3D 
hydrodynamical 
model of solar 
atmosphere
Z/X= 0.0187

Helioseismology: ko
*Asplund et al .Rev.Astr.Astr
A&A (2021) 653
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The solar metallicity puzzle



FLUX Dependenc
e on T SSM-/HZ (1) SSM-/LZ(2) DIFF.

(HZ-LZ)/HZ

pp (1010 cm-2 s-1) T-0.9 5.98(1±0.006) 6.03(1±0.005) -0.8%

pep (108 cm-2 s-1) T-1.4 1.44(1±0.01) 1.46(1±0.009) -1.4%

7Be (109 cm-2 s-1) T11 4.94(1±0.06) 4.50(1±0.06) 8.9%

8B (106 cm-2 s-1) T24 5.46(1±0.12) 4.50(1±0.12) 17.6%

13N (108 cm-2 s-1) T18 2.78(1±0.15) 2.04(1±0.14) 26.6%

15O (108 cm-2 s-1) T20 2.05(1±0.17) 1.44(1±0.16) 29.7%

The predictions for solar neutrinos depends on the input metallicity:
• Indirectly: all reactions depends on temperature  which in turn depends on opacity  which in 

turn depends on metallicity
• Directly: CNO reactions depends directly on the content of C and N in the core of the Sun;

Measuring  the flux of 
CNO neutrinos could 

provide a crucial input to 
solve the puzzle;

The importance of studying CNO 
pp

 c
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12(1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al.,Space Sci.Rev. (1998)85
(2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al.,  Astr. J. 743,(2011)24



The measurement
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Borexino under the Gran Sasso mountain

Core of the detector: 300 tons of liquid 
scintillator (PC+PPO)

Nylon Vessel: 4.25m spherical nylon vessel 
which contains the scintillator

2214 photomultiplier tubes pointing 
towards the center to view the light emitted 
by the scintillator;

Shields to protect the scintillator from 
external background

14



2007 2010 2012 2015PHASE-I PHASE-II

Purifications
PHASE 1 (2007-2010)

Solar neutrinos
• 7Be ν : 1st observation+ 
precise measurement (5%); 
Day/Night asymmetry;
•pep ν: 1st observation;
• 8B ν with low treshold;
•CNO ν: best limit;
Other
•geo-ν Evidence > 4.5σ
•Limit on rare processes
•Study on cosmogenics

PHASE 2 (2012-2016)
Solar neutrinos
• pp neutrinos (Nature 2014)
• seasonal modulations (2017)
``First simultaneous precision 
spectroscopy of pp, 7Be and pep 
solar ν with Borexino Phase-II’’
• New results on 8B neutrinos 

6 cycles of 
water 
extraction

Thermal 
insulation

PHASE 3 
(2017-2021)

Solar neutrinos

2020: First 
detection of CNO 

neutrinos

Borexino: the long story..
2017 2021PHASE-III

October 2021: End of Borexino data-taking 15



2007 2010 2012 2015PHASE-I PHASE-II

Purifications
PHASE 1 (2007-2010)

Solar neutrinos
• 7Be ν : 1st observation+ 
precise measurement (5%); 
Day/Night asymmetry;
•pep ν: 1st observation;
• 8B ν with low treshold;
•CNO ν: best limit;
Other
•geo-ν Evidence > 4.5σ
•Limit on rare processes
•Study on cosmogenics

PHASE 2 (2012-2016)
Solar neutrinos
• pp neutrinos (Nature 2014)
• seasonal modulations (2017)
``First simultaneous precision 
spectroscopy of pp, 7Be and pep 
solar ν with Borexino Phase-II’’
• New results on 8B neutrinos 

(see Davide Franco’s talk)

6 cycles of 
water 
extraction

Thermal 
insulation

PHASE 3 
(2017-2021)

Solar neutrinos

2020: First 
detection of CNO 

neutrinos

Borexino: the long story..
2017 2021PHASE-III

October 2021: End of Borexino data-taking

TODAY: New more 
precise result on 
CNO neutrinos
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Borexino: essential ingredients (1)

Borexino detects neutrinos through 
scattering on electrons

νx + e- νx + e-

CNO ν Scattered e-

17



Borexino: essential ingredients (2)

Number of 
collected photons 
(~ 500 p.e./MeV)

For each scintillation event, we record

Time of arrival of 
collected photons 

@ each PMT  

Energy 

Position 

E
5%~

E
σ(E)

E
10cm~

x
σ(x)

Pulse-shape 
discrimination α, β−, β+



Borexino: essential ingredients (2)

Number of 
collected photons 
(~ 500 p.e./MeV)

For each scintillation event, we record

Time of arrival of 
collected photons 

@ each PMT  

E
5%~

E
σ(E)

E
10cm~

x
σ(x)!

Actually much more complicated than this: 
• Energy reconstruction is affected by non-

linearities (for example, quenching 
effect) ; also it depends on position and 
on particle type;

• σ(E) has non-Poissonian dependencies 
from E and also depends on position;

• Position reco and resolution are also 
energy and position dependent; 

It is crucial to be able of modeling correctly 
these effects (either analytically or with 
MonteCarlo simulations)



Borexino: essential ingredients (3)

Relatively high light yield 
(with respect, for example, to Cerenkov detectors)

Number of photons larger 
than random instrumental 
noise 
• Low energy threshold is 

possible 
• Hardware threshold~ 50 keV

Relatively good energy 
resolution 
• Possibility to distinguish 

contributions from different 
signal/background in the 
energy spectrum;

20



Borexino: essential ingredients (4)

Scintillation light is not directional

• Signal cannot be separated from 
background using correlation with 
the Sun position

• Extreme radiopurity needed!
21



Borexino: the quest for the radiopurity Grail

• The expected rate of CNO solar neutrinos in BX  is  ~ 5 counts/day/100t 
which corresponds to ~ 5 10-8 Bq/Kg;

• Just for comparison:
• Natural water is ~ 10 Bq/Kg in 238U, 232Th and 40K
• Air                  is ~ 10 Bq/m3 in 39Ar, 85Kr and 222Rn
• Typical rock   is ~ 100-1000 Bq/m3 in 238U, 232Th and 40K

BX scintillator must be 9/10 order of magnitude less radioactive 
than anything on Earth!

Requirements



Borexino: the quest for the radiopurity Grail
15 years of work
• Purification of the scintillation (distillation, vacuum stripping with low Ar/Kr N2);
• Detector design: concentric shells to shield the inner scintillator from external 

background
• Material selection and surface treatment, clean construction and handling;

Achievements
• Radiopurity even exceed design goals in some cases 238U chain <9.4x10-20 g/g 

and 232Th chain <5.7x×10-19 g/g; 
• Some background out of specifications (210Po, 85Kr, 210Bi)  see later

23



The search for CNO neutrinos

24



CNO neutrinos: the needle in a haystack

Data set
Jan 2017 – sep 2021 
(after selection cuts)

Extracting the CNO neutrino signal from data

25

Final Phase-III dataset: Jan 2017-Sep 2021; Nev= 110000 



CNO neutrinos: the needle in a haystack

Data set
Jan 2017 – sep 2021 
(after selection cuts)

Extracting the CNO neutrino signal from data

26

Where are CNO 
neutrinos?

only 5 counts/day/100t !

Final Phase-III dataset: Jan 2017-Sep 2021; Nev= 110000 



CNO neutrinos: the needle in a haystack

Data set
Jan 2017 – sep 2021 
(after selection cuts)

Where are CNO 
neutrinos?

only 5 counts/day/100t !

Extracting the CNO neutrino signal from data

They are submerged by 
residual backgrounds like 
a needle in a haystack

27

Final Phase-III dataset: Jan 2017-Sep 2021; Nev= 110000 



CNO neutrinos: the needle in a haystack

MonteCarlo g4bx
• Based on Geant4;
• Full simulation of all processes: energy deposition, light production (scintillator and 

Cerenkov), propagation and collection;
• All known material properties included;
• Known time variations of the detector included (for example, number of live PMTs and 

electronics channels);
• Tuned on calibration data of Phase-I;

• We exploit the difference in the energy and the radial distribution of signal and 
backgrounds to separate them;

• How do we know the spectral shapes for each components of signal and 
backgrounds? By MonteCarlo simulations

Strategy to extract the CNO neutrino signal from data (1)

28



CNO neutrinos: the needle in a haystack

• We exploit the difference in the energy distribution of signal and backgrounds to 
separate them;

• How do we know the spectral shapes for each components of signal and 
backgrounds? By MonteCarlo simulations

Strategy to extract the CNO neutrino signal from data (1)

29



CNO neutrinos: the needle in a haystack

• A fit is performed to the energy distribution of events assumed to be the sum 
of signal and backgrounds;

• The spectral shapes are those determined with MC simulations;
• We include in the fit also the radial distribution of events to separate external 

backgrounds;
• The rates of each species are the only free parameters of the fit;

• We exploit the difference in the energy distribution of signal and backgrounds to 
separate them;

• How do we know the spectral shapes for each components of signal and 
backgrounds? By MonteCarlo simulations

Strategy to extract the CNO neutrino signal from data (1)
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The problem of 210Bi

31



The main problem for the extraction of CNO neutrinos is 210Bi;

CNO neutrinos: the problem of 210Bi

THE PROBLEM
• The rate of CNO and 210Bi is 

comparable;
• The spectral shape is very similar 
 the fit cannot disentangle the 
two contributions easily!

32

Final Phase-III dataset: Jan 2017-Sep 2021; Nev= 110000 



The main problem for the extraction of CNO neutrinos is 210Bi;

CNO neutrinos: the problem of 210Bi

Need to determine the rate 
of 210Bi independently in 

order to constrain it in the fit

THE PROBLEM
• The rate of CNO and 210Bi is 

comparable;
• The spectral shape is very similar 
 the fit cannot disentangle the 
two contributions easily!

33

Final Phase-III dataset: Jan 2017-Sep 2021; Nev= 110000 



How can we measure the 210Bi rate independently from the fit? 

• 210Bi comes from 210Pb
210Pb  210Bi + β- (τ=33y)

210Bi  210Po +β- (τ=7d)
210Po  206Pb +α (τ=200d)

• 210Po is relatively easy to count since it is a peak and it is an alpha  pulse-shape 
discrimination methods can be used;

• At secular equilibrium, the rate of 
rate(210Po) = rate(210Bi);

210Po

CNO neutrinos: the problem of 210Bi

34



PROBLEM
• We found large instabilities of the 210Po rate
• We realized they are strongly correlated to temperature variations

• The vessel containing the scintillator 
is contaminated with 210Pb;

• Temperature variations are causing 
convective motions which bring 
210Po from the vessel into the 
scintillator;

CNO neutrinos: tagging 210Bi with 210Po

• In these conditions the secular equilibrium is broken and the tagging of  210Bi 
with 210Po gives misleading results, since 210Po is the sum of two contributions:

• 210Po from the 210Pb chain (rate= 210Bi)
• 210Po from the vessel 35



Need to thermally stabilize the detector

• Insulation of the detector with a 20cm-thick 
layer of rock wool (work completed in dec 
2015);

• Active temperature control system on the 
top of the tank to stabilize the Top/Bottom 
gradient (2016)

CNO neutrinos: tagging 210Bi with 210Po

36



• Thanks to the insulation the convective 
currents are significantly reduced; 

• There is an innermost region almost free 
of convective currents (Low Polonium 
Field-LPoF);

• 2D fit to the LPoF to find the minimum

This provides an upper limit of  210Bi rate

CNO neutrinos: tagging 210Bi with 210Po

37



New results on CNO neutrinos

38



What is new with respect to the previous publication (2020)?

New results on CNO neutrinos: what’s new?

• Improvement of the MC wich gives the 
reference shapes for the fit;

• Exposure increased by ~ 33%
• Cleaner dataset: we removed the last 6 

months of 2016 where contamination 
from unsupported 210Po was still high;

• More stable temperature  less 
unsupported 210Po  larger Low 
Polonium Field (LoPF) region;

• This allows us to set a more 
stringent limit on 210Bi;

R (210Bi) < 10.8+/- 1.0 counts/day/100t

(It was: R (210Bi) < 11.5+/- 1.3 counts/day/100t)39



Results (statistical errors only)
Rate(CNO)= 6.6 +2.0 

-0.7 cpd/100t

New results on CNO neutrinos
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Systematic errors
We have investigated many sources of systematic errors:
• Systematics on the method to extract the 210Bi upper limit (included in the 

error of the constraint);
• Systematics on uniformity of 210Bi (included in the error on the constraint);
• Fit condition: we have performed the fit in ~700 different conditions  negligible;
• Ratio between O and N neutrinos: Systematics due to the fact that we fix the 

N/O ratio in the CNO spectral shapenegligible;
• Systematic associated to non perfect knowledge of the energy response: 

-0.4 +0.5 cpd/100t: stability in time of light yield (estimated with neutrons), 
linearity (from calibrations), non-uniformity (from calibrations and neutrons), 
systematic on the 210Bi spectral shape;

New results on CNO neutrinos

41



Results (including sys errors)
Rate(CNO)= 6.7 +2.0 

-0.8 cpd/100t
φ(CNO)= 6.6 +2.0 

-0.9 x 108 ν cm -2 s -1

Log-likelihood profile for CNO

We disfavor the hypothesis CNO=0 with ~ 7σ significance

New results on CNO neutrinos
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Implications of the new result

43



Astrophysical Implications

44



Confirmation of the existence of the CNO cycle in stars

• The first implication of this result is astrophysical: we confirm with an 
increased significance (~7σ ) the existence of the CNO cycle in Stars;

• CNO is sub-dominant in the Sun, but it is believed to be one of the 
most important process of energy production in the universe;

• For this reason, its experimental confirmation is a milestone for 
experimental astrophysics;

45



Solar Implications
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Determining C and N abundance from CNO measurement

Solar Rʘ, Lʘ, τʘ , opacity, diffusion

Heavy element 
abundance Ne, Mg, Si, S, Ar, Fe

Light element 
abundance C N O

Nuclear S11, S33, S34, Se7, S17,Shep,S114,S116
47

Input Parameters of the Standard Solar Model

Environmental 
input parameters



Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity Environmental 
Parameters

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20
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Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20

49

Environmental 
Parameters



Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20

• The precise measurement of Φ (8B) can be used as a ``thermometer’’ of the solar core temperature;
• By taking the ratio between the Φ(15O)/ Φ(8B) with an appropriate factor k we can minimize the 

uncertainties due to opacity and other input parameters of SSM 

• Naively k= τ O /τ B= 0.83

50

Environmental 
Parameters



Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20

• The precise measurement of Φ (8B) can be used as a ``thermometer’’ of the solar core temperature;
• By taking the ratio between the Φ(15O)/ Φ(8B) with an appropriate factor k we can minimize the 

uncertainties due to opacity and other input parameters of SSM 

• The reality is more complicated: we need to 
propagate the uncertainties of SSM input 
parameters on the fluxes of 15O and 8B by 
means of partial derivatives*;

51
*Haxton, Serenelli, Astr.J. 687, 678 (2008);  Serenelli, Pena-Garay, Haxton, Phys.Rev.D 87 (2013)

Environmental 
Parameters



Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20

• The precise measurement of Φ (8B) can be used as a ``thermometer’’ of the solar core temperature;
• By taking the ratio between the Φ(15O)/ Φ(8B) with an appropriate factor k we can minimize the 

uncertainties due to opacity and other input parameters of SSM 

• The optimal k is found to be 0.769

52

Environmental 
Parameters



Determining C and N abundance from CNO measurement

Indirect dependence on metallicity

Direct dependence on C N abundance

Metallicity

Φ (CNO)
Tcore

Φ(7Be),Φ(8B) τ B = 24

τ O = 20

• The precise measurement of Φ (8B) can be used as a ``thermometer’’ of the solar core temperature;
• By taking the ratio between the Φ(15O)/ Φ(8B) with an appropriate factor k we can minimize the 

uncertainties due to opacity and other input parameters of SSM 

• N.B.: with this procedure we extract directly the 
abundance on the surface;

• In fact, the  procedure relies on partial derivatives with 
respect to the photosphere composition;

53

Abundace
on the 
surface

Environmental 
Parameters



Determining C and N abundance from CNO measurement

Contributions to the error:
• CNO measurement: +30% - 14%;
• 8B flux: +/-2.3%
• Nuclear: +/- 9.7%
• Environm: 0.5% (small by construction)
• Diffusion: 2.7% 
• N/O ratio: 2.2%

• Inserting ΦB from the global analysis
• Calculating ΦO from the CNO flux, assuming the SSM 

N/O neutrino ratio

54



Determining C and N abundance from CNO measurement

• This is the first direct measurement of the C and N abundance (with respect to H) from solar 
neutrinos and can be compared directly with the measurements derived from the solar 
photosphere;

Our measurement agrees nicely with the High Metallicity ones, while features a ~2σ tension 
with the low metallicity measurements

N.B.: we use as 
reference SSM B16-
GS98, but by 
construction the 
method is only 
weakly dependent 
on  it

55



Comparison with SSM predictions: HZ vs LZ

56



Borexino only (+KL)

• We include only Borexino results, (8B, 
7Be,CNO) +KamLAND;

• Φ(Be), Φ(B) and Φ(CNO), together with 
θ12 and ∆m2

12  are free parameter of the 
fit;

• The results agree well with the output of 
SSM-HZ(1) model, while feature a small 
tension  with the SSM-LZ (2) model (p= 
0.018);

• This small tension is created mostly (but 
not only) by the addition of the CNO 
result (p-value goes from 0.196 
0.018);

Comparison with predictions of SSM: BX only

--- BX+KL     68.27% C.L.
--- SSM-HZ  68.27% C.L
--- SSM-LZ   68.27% C.L

57(1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al.,Space Sci.Rev. (1998)85
(2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al.,  Astr. J. 743,(2011)24



Comparison with predictions of SSM: global analysis

Global Analysis
• We include the CNO result in a 

global analysis of all solar neutrino 
data+KamLAND;

• Φ(Be), Φ(B) and Φ(CNO), together 
with θ12 and ∆m2

12  are free parameter 
of the fit;

• The results agree well with the output 
of SSM-HZ (1) model, while feature a 
small tension  with the SSM-LZ (2)

model (p= 0.028);
• This small tension is created by the 

addition of the CNO result (p-value 
goes from 0.327  0.028)

(1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al.,Space Sci.Rev. (1998)85
(2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al.,  Astr. J. 743,(2011)24

58

--- GLOBAL  68.27% C.L.
--- SSM-HZ  68.27% C.L
--- SSM-LZ   68.27% C.L



SSM-HZ(1) vs SSM-LZ (2)

We perform a frequentist hypothesis test based on a likelihood-ratio test statistics (SSM-HZ vs SSM-LZ);

Comparison with predictions of SSM: SSM-HZ vs SSM-LZ

We build the test  statistics t including 7Be, 8B 
and CNO flux predictions;

Assuming SSM-HZ, Borexino results on 7Be, 
8B and CNO neutrinos disfavours SSM-LZ 
with a p-value of 9.1x10-4 (~ 3.1σ)

59(1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al.,Space Sci.Rev. (1998)85
(2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al.,  Astr. J. 743,(2011)24



Conclusions

• CNO-null hypothesis excluded at ~ 7σ: Borexino has provided a new improved 
measurement of the CNO rate  which reinforces the results previously obtained, excluding  the 
CNO null-hypothesis at ~ 7σ;

• We measure NNC in the Sun for the first time with solar neutrinos: the CNO 
measurement, combined with the 8B flux obtained from the global analysis is used to determine 
the abundance of C and N in the Sun;

• NNC in good agreement with HZ photospheric measurements; ~2σ tension 
with the LZ photospheric measurements;  

• CNO+7Be+8B neutrino flux results from BX disfavor SSM-LZ at 3.1σ (when 
compared to HZ-SSM) (assuming SSM-HZ to be true and using a frequentist analysis 
based on a likelihood-ratio test statistics);
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arXiV:2205.15975
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