

Neutrinos from the CNO cycle

Barbara Caccianiga-INFN and University of Milano (on behalf of the Borexino Collaboration)

The Sun is powered by nuclear reactions occurring in its core

4 p $\rightarrow \alpha$ +2 e⁺ +2 ν (E released ~ 26 MeV)

pp CHAIN: ~99% of the Sun energy

- Neutrinos propagates from the core to the surface of the Sun in few seconds and then take only 8 minutes to reach the Earth;
- > Unlike photons they provide a real time picture of the core of the Sun

 Φ (proton-proton chain ν) ~6 x10 ¹⁰ ν /cm²/sec

Solar neutrino spectrum

- Neutrinos propagates from the core to the surface of the Sun in few seconds and then take only 8 minutes to reach the Earth;
- > Unlike photons they provide a real time picture of the core of the Sun

 Φ (proton-proton chain ν) ~6 x10 ¹⁰ ν /cm²/sec

 Φ (CNO ν) (blue dotted line) ~5 x10 8 ν /cm 2 /sec

Solar neutrino spectrum

The glorious past

Astrophysics

Original motivation of the first experiments on solar v was to test Standard Solar Model (SSM);

Solar neutrino problem

Study of the details of ν flux

Particle physics

Breakthrough! The solar neutrino problem provided one of the first hints towards the discovery of neutrino oscillations;

- Borexino has studied neutrinos from both the p-p chain and the CNO cycle;
- It has singled-out neutrinos from each different reactions (pp, pep, 7Be, 8B, CNO)

Probe details of the nuclear reactions in our Sun

$$R \equiv \frac{<^{3} \text{He} + ^{4} \text{He} >}{<^{3} \text{He} + ^{3} \text{He} >} = \frac{2\phi(^{7}\text{Be})}{\phi(\text{pp}) - \phi(^{7}\text{Be})}$$
 $\mathbb{R} = 0.18 \pm 0.02$

Probe oscillations at different energies

 $P_{ee}(pp)=0.57\pm0.10;$ $P_{ee}(^{7}Be)=0.53\pm0.05$ $P_{ee}(pep)=0.43\pm0.11$ $P_{ee}(^{8}B)=0.37\pm0.08$

The CNO cycle

$4 p \rightarrow \alpha + 2 e^{+} + 2v$

- Sub-cycle I (involving CN) is dominant over sub-cycle II (involving NO);
- Neutrinos are emitted in two reactions:

$$^{13}N \rightarrow ^{13}C + e^+ + v_e (E_{max} = 1.20 \text{ MeV})$$

$$^{15}O \rightarrow ^{15}N + e^{+} + v_{e} (E_{max} = 1.74 \text{ MeV})$$

The CNO cycle

- The CNO cycle is sub-dominant in the Sun;
- It is dominant in more massive Stars;

- The experimental proof of the existence of the CNO cycle is important in itself, since CNO is a crucial process for energy production in Stars and was never observed experimentally before 2020; this new publication
- First evidence (5σ) presented by Borexino in 2020;

Unlike the proton-proton chain, CNO depends directly on the content of elements C - N catalyzing the reaction;

in this new publication

Studying CNO will give direct experimental information on the solar metallicity;

The solar metallicity puzzle

- Metallicity of the Sun: abundance of elements with Z>2 (C, N, O, Ne, Mg, Si, S,Ar, Fe...);
- Metallicity is obtained from spectroscopic measurement of the photosphere and from studies of meteorites;
- Metallicity is an input of the Standard Solar Models (SSMs are calibrated on it);
- Metallicity influences significantly the outputs of SSM (metallicity→ opacity→Temperature)

Two observables to cross-check SSM

Helioseismology

Study of the sound wave propagation on the surface of the Sun;

Solar neutrinos

Study of the flux of solar neutrinos from the different nuclear reactions

The solar metallicity puzzle

1998

GS98*: high metallicity

Uses 1D hydrodynamical model of solar atmosphere

Z/X = 0.023

*Grevesse et al., Space

Sci.Rev. (1998)85]

2009

AGS09met*: low metallicity

Uses 3D hydrodynamical model of solar atmosphere

Z/X = 0.018

Helioseismology: ko *A. Serenelli er al., Astr. J. 743,(2011)24 2011

Caffau11*: low metallicity

Uses 3D hydrodynamical model of solar atmosphere

Z/X = 0.0209

Helioseismology: ko *E.Caffau et al., Sol.Phys. (2011) 268 2021

AGG21*: low metallicity

Uses 3D hydrodynamical model of solar atmosphere

Z/X = 0.0187

Helioseismology: ko

*Asplund et al .Rev.Astr.Astr A&A (2021) 653 2022

MB22*: high metallicity

Uses 3D hydrodynamical model of solar atmosphere

Z/X = 0.0225

Helioseismology: ok

Magg et al., arXiV:2203.02255

The predictions for solar neutrinos depends on the input metallicity:

- Indirectly: all reactions depends on temperature → which in turn depends on opacity → which in turn depends on metallicity
- Directly: CNO reactions depends directly on the content of C and N in the core of the Sun;

	FLUX	Dependenc e on T	SSM-/HZ ⁽¹⁾	SSM-/LZ ⁽²⁾	DIFF. (HZ-LZ)/HZ
	pp (10 ¹⁰ cm ⁻² s ⁻¹)	T-0.9	5.98(1±0.006)	6.03(1±0.005)	-0.8%
	pep (10 ⁸ cm ⁻² s ⁻¹)	T-1.4	1.44(1±0.01)	1.46(1±0.009)	-1.4%
	⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	T ¹¹	4.94(1±0.06)	4.50(1±0.06)	8.9%
	⁸ B (10 ⁶ cm ⁻² s ⁻¹)	T ²⁴	5.46(1±0.12)	4.50(1±0.12)	17.6%
	¹³ N (10 ⁸ cm ⁻² s ⁻¹)	T ¹⁸	2.78(1±0.15)	2.04(1±0.14)	26.6%
	¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	T ²⁰	2.05(1±0.17)	1.44(1±0.16)	29.7%

ppchain

SNO cycle

⁽¹⁾ SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (**2017**) 202 + Grevesse et al., Space Sci. Rev. **(1998**)85

⁽²⁾ SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al., Astr. J. 743,(2011)24

The measurement

Borexino under the Gran Sasso mountain

Core of the detector: 300 tons of liquid scintillator (PC+PPO)

2214 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator;

Shields to protect the scintillator from external background

Nylon Vessel: 4.25m spherical nylon vessel which contains the scintillator

Borexino: the long story...

Borexino: the long story...

Borexino: essential ingredients (1)

Borexino detects neutrinos through scattering on electrons

Borexino: essential ingredients (2)

For each scintillation event, we record

Number of collected photons (~ 500 p.e./MeV)

Time of arrival of collected photons @ each PMT

Position

 $\frac{\sigma(x)}{x} \sim \frac{10cm}{\sqrt{E}}$

Pulse-shape discrimination

$$\alpha, \beta^-, \beta^+$$

Borexino: essential ingredients (2)

For each scintillation event, we record

Number of collected photons (~ 500 p.e./MeV)

Time of arrival of collected photons @ each PMT

Actually much more complicated than this:

- Energy reconstruction is affected by nonlinearities (for example, quenching effect); also it depends on position and on particle type;
- $\sigma(E)$ has non-Poissonian dependencies from E and also depends on position;
- Position reco and resolution are also energy and position dependent;

It is crucial to be able of modeling correctly these effects (either analytically or with MonteCarlo simulations)

Borexino: essential ingredients (3)

Relatively high light yield with respect, for example, to Cerenkov detectors)

Number of photons larger than random instrumental noise \rightarrow

- Low energy threshold is possible
- Hardware threshold~ 50 keV

Relatively good energy resolution \rightarrow

 Possibility to distinguish contributions from different signal/background in the energy spectrum;

Borexino: essential ingredients (4)

Scintillation light is not directional

 Signal cannot be separated from background using correlation with the Sun position

Extreme radiopurity needed!

Borexino: the quest for the radiopurity Grail

Requirements

- The expected rate of CNO solar neutrinos in BX is ~ 5 counts/day/100t which corresponds to ~ 5 10⁻⁸ Bq/Kg;
- Just for comparison:
 - Natural water is ~ 10 Bq/Kg in ²³⁸U, ²³²Th and ⁴⁰K
 - Air is $\sim 10 \text{ Bq/m}^3 \text{ in } ^{39}\text{Ar}, ^{85}\text{Kr and } ^{222}\text{Rn}$
 - Typical rock is $\sim 100-1000$ Bq/m³ in ²³⁸U, ²³²Th and ⁴⁰K

BX scintillator must be 9/10 order of magnitude less radioactive than anything on Earth!

Borexino: the quest for the radiopurity Grail

15 years of work

- Purification of the scintillation (distillation, vacuum stripping with low Ar/Kr N2);
- Detector design: concentric shells to shield the inner scintillator from external background
- Material selection and surface treatment, clean construction and handling;

Achievements

- Radiopurity even exceed design goals in some cases ²³⁸U chain <9.4x10⁻²⁰ g/g and ²³²Th chain <5.7x×10⁻¹⁹ g/g;
- Some background out of specifications (²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi) ← see later

The search for CNO neutrinos

Extracting the CNO neutrino signal from data

Data set
Jan 2017 – sep 2021
(after selection cuts)

Extracting the CNO neutrino signal from data

Data set
Jan 2017 – sep 2021
(after selection cuts)

Where are CNO neutrinos?
only 5 counts/day/100t!

Extracting the CNO neutrino signal from data

Data set
Jan 2017 – sep 2021
(after selection cuts)

Where are CNO neutrinos?
only 5 counts/day/100t!

They are submerged by residual backgrounds like a needle in a haystack

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy and the radial distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

MonteCarlo g4bx

- Based on Geant4;
- Full simulation of all processes: energy deposition, light production (scintillator and Cerenkov), propagation and collection;
- All known material properties included;
- Known time variations of the detector included (for example, number of live PMTs and electronics channels);
- Tuned on calibration data of Phase-I;

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

Strategy to extract the CNO neutrino signal from data (1)

- We exploit the difference in the energy distribution of signal and backgrounds to separate them;
- How do we know the spectral shapes for each components of signal and backgrounds? By MonteCarlo simulations

- A fit is performed to the energy distribution of events assumed to be the sum of signal and backgrounds;
- The spectral shapes are those determined with MC simulations;
- We include in the fit also the radial distribution of events to separate external backgrounds;
- The rates of each species are the only free parameters of the fit;

The problem of ²¹⁰Bi

CNO neutrinos: the problem of ²¹⁰Bi

The main problem for the extraction of CNO neutrinos is ²¹⁰Bi;

THE PROBLEM

- The rate of CNO and ²¹⁰Bi is comparable;
- The spectral shape is very similar
 → the fit cannot disentangle the two contributions easily!

CNO neutrinos: the problem of ²¹⁰Bi

The main problem for the extraction of CNO neutrinos is ²¹⁰Bi;

THE PROBLEM

- The rate of CNO and ²¹⁰Bi is comparable;
- The spectral shape is very similar
 → the fit cannot disentangle the two contributions easily!

Need to determine the rate of ²¹⁰Bi independently in order to constrain it in the fit

CNO neutrinos: the problem of ²¹⁰Bi

How can we measure the ²¹⁰Bi rate independently from the fit?

²¹⁰Bi comes from ²¹⁰Pb

210
Pb → 210 Bi + β- (τ=33y)
 210 Bi → 210 Po +β- (τ=7d)
 210 Po → 206 Pb +α (τ=200d)

 At secular equilibrium, the rate of rate(²¹⁰Po) = rate(²¹⁰Bi);

 ²¹⁰Po is relatively easy to count since it is a peak and it is an alpha → pulse-shape discrimination methods can be used;

CNO neutrinos: tagging ²¹⁰Bi with ²¹⁰Po

PROBLEM

- We found large instabilities of the ²¹⁰Po rate
- We realized they are strongly correlated to temperature variations

- The vessel containing the scintillator is contaminated with ²¹⁰Pb;
- Temperature variations are causing convective motions which bring ²¹⁰Po from the vessel into the scintillator;
- In these conditions the secular equilibrium is broken and the tagging of ²¹⁰Bi with ²¹⁰Po gives misleading results, since ²¹⁰Po is the sum of two contributions:
- ²¹⁰Po from the ²¹⁰Pb chain (rate= ²¹⁰Bi)
- ²¹⁰Po from the vessel

CNO neutrinos: tagging ²¹⁰Bi with ²¹⁰Po

Need to thermally stabilize the detector

- Insulation of the detector with a 20cm-thick layer of rock wool (work completed in dec 2015);
- Active temperature control system on the top of the tank to stabilize the Top/Bottom gradient (2016)

CNO neutrinos: tagging ²¹⁰Bi with ²¹⁰Po

- Thanks to the insulation the convective currents are significantly reduced;
- There is an innermost region almost free of convective currents (Low Polonium Field-LPoF);
- 2D fit to the LPoF to find the minimum

$$R_{\text{Po}}(\rho, z) = R_{\text{Po}}^{b} \left[1 + \frac{\rho^2}{a^2} + \frac{(z - z_0)^2}{b^2} \right]$$

This provides an upper limit of ²¹⁰Bi rate

New results on CNO neutrinos: what's new?

What is new with respect to the previous publication (2020)?

- Improvement of the MC wich gives the reference shapes for the fit;
- Exposure increased by ~ 33%
- Cleaner dataset: we removed the last 6 months of 2016 where contamination from unsupported ²¹⁰Po was still high;
- More stable temperature → less unsupported ²¹⁰Po → larger Low Polonium Field (LoPF) region;
- This allows us to set a more stringent limit on ²¹⁰Bi;

R (210 Bi) < 10.8+/- 1.0 counts/day/100t

(It was: $R(^{210}Bi) < 11.5 + / - 1.3 \text{ counts/day/} 100t)$

Results (statistical errors only)

Rate(CNO)= $6.6^{+2.0}_{-0.7}$ cpd/100t

Systematic errors

We have investigated many sources of systematic errors:

- Systematics on the method to extract the ²¹⁰Bi upper limit (included in the error of the constraint);
- Systematics on uniformity of ²¹⁰Bi (included in the error on the constraint);
- **Fit condition:** we have performed the fit in ~700 different conditions → negligible;
- Ratio between O and N neutrinos: Systematics due to the fact that we fix the N/O ratio in the CNO spectral shape→negligible;
- Systematic associated to non perfect knowledge of the energy response: -0.4 +0.5 cpd/100t: stability in time of light yield (estimated with neutrons), linearity (from calibrations), non-uniformity (from calibrations and neutrons), systematic on the ²¹⁰Bi spectral shape;

Log-likelihood profile for CNO

Results (including sys errors)

Rate(CNO)= 6.7 +2.0 _{-0.8} cpd/100t φ(CNO)= 6.6 +2.0 _{-0.9} x 10⁸ ν cm -2 s -1

We disfavor the hypothesis CNO=0 with $\sim 7\sigma$ significance

Implications of the new result

Astrophysical Implications

Confirmation of the existence of the CNO cycle in stars

- The first implication of this result is astrophysical: we confirm with an increased significance ($\sim 7\sigma$) the existence of the CNO cycle in Stars;
- CNO is sub-dominant in the Sun, but it is believed to be one of the most important process of energy production in the universe;
- For this reason, its experimental confirmation is a milestone for experimental astrophysics;

Solar Implications

Input Parameters of the Standard Solar Model

Environmental input parameters

Nuclear

S₁₁, S₃₃, S₃₄, S_{e7}, S₁₇, S_{hep}, S₁₁₄, S₁₁₆

Direct dependence on C N abundance

$$\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM} \propto (T_{\rm c}/T_{\rm c}^{\rm SSM})^{\tau_{\rm B}}$$
 $\tau_{\rm B}$ = 24

$$\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM} \propto \frac{n_{\rm CN}}{n_{\rm CN}^{\rm SSM}} \times (T_{\rm c}/T_{\rm c}^{\rm SSM})^{\tau_{\rm O}}$$
 $\tau_{\rm O} = 20$

Direct dependence on C N abundance

Direct dependence on C N abundance

- The precise measurement of Φ (8B) can be used as a ``thermometer" of the solar core temperature;
- By taking the ratio between the $\Phi(^{15}O)/\Phi(^{8}B)$ with an appropriate factor k we can minimize the uncertainties due to opacity and other input parameters of SSM

$$\frac{(\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM})}{(\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM})^k} \propto \frac{n_{\rm CN}}{n_{\rm CN}^{\rm SSM}} \left(\frac{T_{\rm o}}{T_{\rm c}^{\rm SSM}}\right)^{\tau_{\rm O}-k\tau_{\rm B}}$$

• Naively $k = \tau_{O} / \tau_{B} = 0.83$

Direct dependence on C N abundance

- The precise measurement of Φ (8B) can be used as a ``thermometer" of the solar core temperature;
- By taking the ratio between the $\Phi(^{15}O)/\Phi(^{8}B)$ with an appropriate factor k we can minimize the uncertainties due to opacity and other input parameters of SSM

$$\frac{(\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM})}{(\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM})^k} \propto \frac{n_{\rm CN}}{n_{\rm CN}^{\rm SSM}} \left(\frac{T_{\rm o}}{T_{\rm c}^{\rm SSM}}\right)^{\tau_{\rm O}-k\tau_{\rm B}}$$

 The reality is more complicated: we need to propagate the uncertainties of SSM input parameters on the fluxes of ¹⁵O and ⁸B by means of partial derivatives*;

Direct dependence on C N abundance

- The precise measurement of Φ (8B) can be used as a ``thermometer" of the solar core temperature;
- By taking the ratio between the $\Phi(^{15}O)/\Phi(^{8}B)$ with an appropriate factor k we can minimize the uncertainties due to opacity and other input parameters of SSM

$$\frac{N_{\rm CN}}{N_{\rm CN}^{\rm SSM}} = \frac{(\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM})}{(\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM})^{0.769}}$$

The optimal k is found to be 0.769

Direct dependence on C N abundance

- The precise measurement of Φ (8B) can be used as a ``thermometer" of the solar core temperature;
- By taking the ratio between the $\Phi(^{15}O)/\Phi(^{8}B)$ with an appropriate factor k we can minimize the uncertainties due to opacity and other input parameters of SSM

- N.B.: with this procedure we extract directly the abundance on the surface;
- In fact, the procedure relies on partial derivatives with respect to the photosphere composition;

- Inserting Φ_{B} from the global analysis
- Calculating $\Phi_{\rm O}$ from the CNO flux, assuming the SSM N/O neutrino ratio

$$N_{\rm CN} = (5.78^{+1.85}_{-1.00}) \times 10^{-4}$$

Contributions to the error:

- CNO measurement: +30% 14%;
- ⁸B flux: +/-2.3%
- Nuclear: +/- 9.7%
- Environm: 0.5% (small by construction)
- Diffusion: 2.7%
- N/O ratio: 2.2%

 This is the first direct measurement of the C and N abundance (with respect to H) from solar neutrinos and can be compared directly with the measurements derived from the solar photosphere;

N.B.: we use as reference SSM B16-GS98, but by construction the method is only weakly dependent on it

Our measurement agrees nicely with the High Metallicity ones, while features a $\sim 2\sigma$ tension with the low metallicity measurements

Comparison with SSM predictions: HZ vs LZ

Comparison with predictions of SSM: BX only

Borexino only (+KL)

- We include only Borexino results, (8B, 7Be,CNO) +KamLAND;
- $\Phi(Be)$, $\Phi(B)$ and $\Phi(CNO)$, together with θ_{12} and Δm^2_{12} are free parameter of the fit;
- The results agree well with the output of SSM-HZ⁽¹⁾ model, while feature a small tension with the SSM-LZ⁽²⁾ model (p= 0.018);
- This small tension is created mostly (but not only) by the addition of the CNO result (p-value goes from 0.196 → 0.018);

(1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al., Space Sci. Rev. (1998) 85

Comparison with predictions of SSM: global analysis

Global Analysis

- We include the CNO result in a global analysis of all solar neutrino data+KamLAND;
- $\Phi(Be)$, $\Phi(B)$ and $\Phi(CNO)$, together with θ_{12} and Δm^2_{12} are free parameter of the fit;
- The results agree well with the output of SSM-HZ⁽¹⁾ model, while feature a small tension with the SSM-LZ⁽²⁾ model (p= 0.028);
- This small tension is created by the addition of the CNO result (p-value goes from 0.327 → 0.028)

- (1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (**2017**) 202 + Grevesse et al.,Space Sci.Rev. **(1998**)85
- (2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al., Astr. J. 743,(2011)24

Comparison with predictions of SSM: SSM-HZ vs SSM-LZ

SSM-HZ⁽¹⁾ vs SSM-LZ⁽²⁾

We perform a frequentist hypothesis test based on a likelihood-ratio test statistics (SSM-HZ vs SSM-LZ);

We build the test statistics *t* including ⁷Be, ⁸B and CNO flux predictions;

Assuming SSM-HZ, Borexino results on 7 Be, 8 B and CNO neutrinos disfavours SSM-LZ with a p-value of $9.1x10^{-4}$ (~ 3.1σ)

- (1) SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al., Space Sci. Rev. (1998) 85
- (2) SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr. J. 835 (2017) 202 + A. Serenelli er al., Astr. J. 743,(2011)24

Conclusions

- CNO-null hypothesis excluded at ~ 7σ : Borexino has provided a new improved measurement of the CNO rate which reinforces the results previously obtained, excluding the CNO null-hypothesis at ~ 7σ ;
- We measure N_{NC} in the Sun for the first time with solar neutrinos: the CNO measurement, combined with the 8B flux obtained from the global analysis is used to determine the abundance of C and N in the Sun;
- N_{NC} in good agreement with HZ photospheric measurements; ~2σ tension with the LZ photospheric measurements;
- CNO+⁷Be+⁸B neutrino flux results from BX disfavor SSM-LZ at 3.1σ (when compared to HZ-SSM) (assuming SSM-HZ to be true and using a frequentist analysis based on a likelihood-ratio test statistics);

