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A simple perspective on the interface between
Al and Physics N

[ Statistics, data science, and Al/ML form important fields of research in modern science.

O They describe how to learn and make predictions from data, as well as allowing the extraction of key
information about physical process and the underlying scientific laws based on large datasets.

1 Recent advances in Al capabilities are being applied to advance scientific discovery in the physical sciences

(Carleo et al. RMP 91 (2019) 045002; Deiana et al. (2021), arXiv:2110.13041). ;



Introduction: Al in Nuclear Physics

NUCLEAR THEORY
e Correlations and predictions
e Estimations and causations

A. Boehnlein et al., Review of
Modern Physics (2022), in press,
arXiv:2112.02309

Hot and Dense
Nuclear Matter
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Atomic Nucleus
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NUCLEAR DATA

e Databases DISCOVERY
e Data Mining
e Visualization

Experimental Design

APPLICATIONS

NUCLEAR EXPERIMENT
e Methods
e Tools

Nuceli in the Cosmos

ACCELERATOR SCIENCE
AND OPERATIONS

Fundamental Interactions

A Nuclear physics covers a huge span of degrees of freedom, energy scales and length scales, ranging from our

basic understanding of fundamental constituents of matter to the structure of stars and the synthesis of the
elements in the Cosmos.

U The broad aims of nuclear physics as a field corresponds to a highly distributed scientific enterprise. These

efforts, utilizing arrays of data types across size and energy scales, create a perfect environment for
applications of Al/ML !


https://arxiv.org/pdf/2112.02309.pdf

Context: Al for Science — what’s next after Exascale

e Over 1,000 scientists participated in four town
halls during the summer of 2019

SCIENCE e

xS .- * Research Opportunities in Al
Y"LE‘i"fT’?TLf"f Ty * Biology, Chemistry, Materials,

JEFF NICHOLS . > * Climate, Phy5|CS, Energy, C_osmology
o i i B .  Mathematics and Foundations

* Data Life Cycle

e Software Infrastructure

* Hardware for Al

* Integration with Scientific Facilities

e Modeled after the Exascale Series in 2007

[ KAty vELICK e .
| DAVID BROWN re

https://www.anl.gov/ai-for-science-report
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Al in Nuclear Physics — Grand Challenges

[ Harness the physics program of the Electron-lon Collider (EIC)
» Al/ML will help guarantee maximum science output from the EIC
(] Realize the science potential of FRIB

» A variety of Al/ML tools will be developed to address specific needs including beam generation,
event characterization, detector response, experiment optimization and data analysis

(J Event Reconstruction in Nuclear Physics

» Al techniques for reconstruction of tracks in time projection chambers at FRIB, and for heavy ion
collisions

O Improve Tracking Algorithms
» Al/ML to significantly improve tracking at all NP accelerator facilities
U Particle Identification

» Al/ML to complement existing Monte Carlo methods for PID

» Gamma-Ray Energy Tracking Array (GRETA): Al/ML to reconstruct the path of multiple gamma rays

from measured interaction positions and deposited energies
6



Context: 2020 ASCAC Subcommittee on: ‘Al/ML, Data-intensive

Science and High-Performance Computing’ (Subcommittee on ‘Al
for Science’)

Components needed for successful Al in Science Initiative
Application-specific solutions based on hardware/software/algorithm co-design
Research in Al algorithms and foundations
Development of Al software infrastructure

Al-specific computing architectures and hardware
Successful integration of these components will require
A full partnership between all areas of the Office of Science

Engagement of the National Laboratories and their user facilities

Involvement of the university and private industry research community

N e

Mechanisms for collaborative projects with agencies such as the NSF, NIH, NIST
and DOD

5. Collaboration with expert organizations from similarly minded countries

6. An organized process for dissemination to the scientific community

https://science.osti.gov/ascr/ascac/Meetings/202009



Activities in Nuclear Physics: 2020 Al for NP Workshop

O 3 day workshop with 180 attendees with plenary breakout format

: O 1 day pre-meeting ‘hackathon’

March 4-6, 2020 ' 8 Break out groups to address aspects of Theory, Experiment, and
Accelerator

O The results were summarized in a report containing an assessment
of ongoing efforts

@r P. Bedaque et al., Eur.Phys.J.A 57 (2021) 3, 100
@ENERGY
Jefferson Lab = Also summary of the breakout session and additional topical

www.jlab.org/conference/A12020 areas (relativistic heavy lons, Project 8, NEXT and Wanda) not

present at the workshop
= |dentified need for workforce development and education and
a need for cross disciplinary collaborations.

Based on this and many subsequent activities:
Tremendous interest in AI/ML in the Nuclear
Physics Community 8



https://link.springer.com/article/10.1140%2Fepja%2Fs10050-020-00290-x

A.l. for NP: Priority Research Directions

(J Game Changers in Nuclear Theory

» LQCD: sign problem, extraction of physical observables, propagator inversion
» Global QCD analysis
» ldentifying rare events

» Microscopic description of nuclear fission, origin of the elements, quantified computation of heavy nuclei, correlations
and emergent phenomena, spectroscopic quality nuclear density functional, neutron star and dense matter EOS

 Holistic approach to experimentation — expert systems to increase scientific output
» Intelligently combine disparate data sources
» Real time analysis and feedback
J Experiment Design not limited by computation
» Data compactification, sophisticated triggers, and fast online analysis
O Improving simulation and Analysis
» Use AlI/ML to improve the sensitivity of current instruments and accuracy of data
» Decrease simulation and analysis time

(J Accelerator Design and operations 9



A.l. for NP: Community ldentified Needs and
Communalities

J Need for workforce development
» Educational activities
» Need for broader community
» Need for collaboration

[ Need for problem-specific tools

» NP applications are unique in that they are often aimed at accelerating calculation, e.g.,
o Evaluation of models where one can use Al techniques to identify the most promising calculative pathways
o Simulations where Al-determined parameterizations can be used to circumvent performance limiting
elements

M Enabling infrastructure for Al in NP
» Need for standardized frameworks
» Need for comprehensive data management
» Need for adequate computing resources

[ Need for uncertainty quantification
10



Areas of Active Research
in Al/ML in NP

4 Invited article for Review of Modern Physics A.
Boehnlein et al. (2022) in press, arXiv:2112.02309

O Focuses on recent application of Al/MLin NP
covering topics in:
o Nuclear Theory
o Experimental Methods
o Accelerator Technology
o Nuclear Data
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https://arxiv.org/pdf/2112.02309.pdf

Al/ML in Nuclear Theory and Lattice QCD

Topics in Low-Energy, Medium-Energy, High-Energy Nuclear Theory and Lattice QCD

U Properties of heavy nuclei and nuclear density functions theory
» Crucial for understanding rare isotopes
(J Nuclear Properties - Nuclear Shell Model
» Improve the predictive power of nuclear models — model residuals
1 Discovering nucleonic correlations and emergent phenomena
» Discover correlations in calculations of nuclear wave functions that use underlying forces
O Nuclear femtography — parton distribution functions
» Global feature extraction from (large) datasets
1 Neutron star and dense matter equation of state
» Deduce nuclear matter equation of state from intermediate-energy heavy-ion collisions data
» Phase transitions and estimators for correlation functions
L Ensemble generation in lattice QCD

» Scalability, compact variables, sign problem
12



Nuclear Theory Examples

(J Example 1: Bayesian Model Averaging to Quantify Limits of the nuclear landscape

Constrained density functional theory calculations in multidimensional

collective spaces with Bayesian Model Averaging

L. Neufcourt et al., PRL 122 (2019) 062502
L. Neufcourt et al,, Phys, Rev, C 101 (2020) 014319

V. Kejzlar et al., J. Phys. G 47 (2020) 094001

Proton number

—— measured  ------
observed

p-stability
FRIB

L. Neufcourt et al., Phys. Rev. C 101 (2020) 044307

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Neutron number

13



Nuclear Theory Examples

1 Example 2: Many body-variational calculations with ANN

— GFMC .« 4.
- L ANN Demonstrated predictive power of
ANNs for converged solutions of weakly
LOj 102 | converging simulations of light nuclei
5708 - \ with up to six nucleons
Lg \
<056 4 \
St 10 ‘ C. Adams et al., Phys. Rev. Lett. 127 (2021) 022502
0.4
02, 10-25.() 225 250 275 3.000 3.25 350 3.75 4.00 \
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r (fm)

14



Nuclear Theory Examples

1 Example 3: Monte Carlo approach for Bayesian inference

Simultaneous extraction of a variety of Quantum Correlation Functions for
nuclear femtography

J.J. Ethier et al., PRL 119 (2017) 13, 132001; Moffat et al., (2021) arXiv:2101.04664; Sato et al., PRD 101 (2020) 7, 074020
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Nuclear Theory Examples

 Example 4: Bayesian analysis to constrain model parameters

() @ ® (2 Input: particle list

Model Parameter: experimental data: L
eqgn. of state TVK/P spectra o ° .. ¢« o%e J
o® ° * v

shear viscosity yields vs. centrality & beam

- initial Stéllte ' elliptic flow [ 1D CNN }
pre-equilibrium dynamics HBT
thermalization time charge correlations & BFs ‘ latent features ‘ =

U

[ 1D CNN }

particlization/freeze-out

Classification

tlatent features ‘ = G

Point Cloud Net| | 2x(kNN + Edge CNN) |

Generative models to approximate model output I —; N
ANN help to reveal correlations hidden in high- 1D CNN ;ﬁ fjj;,@
dimensional data T e e :
©
Noise ™~ Signal
Tagging

16



Lattice QCD Examples

Count
O Example 1: Field configurations and properties 1‘%{?{; BOML | e ...
Towards elimination of critical slowing down in MCMCfor 1+ =5 N
scalar ¢* theory — construct normalizing flows via ANN 1§§§' = e c | Ve
NN to predict lattice action parameters from field N B m g ™ K oox o
configurations p g shanahan et al., Phys. Rev. D 97 (2018) 094506 ul%é)g Wi | rr
M.S. Albergo et al., Phys. Rev. D 100 (2019) no.3 034515 1(1)_0 —TIT . ) T

(J Example 2: Speed up Hadron Correlator Computation

Proton Effective Mass, m- = 410 MeV, a = 0.9 fin

) ~
Euclidean Time

t  Precise; e= 108
Training: ¢ = 102
NN

10 12 14

Boosted Decision Trees and ANNSs to reduce the cost of
iterative solvers for quark propagator by relating solutions
to the system computed at different precision

Enormous increase in efficiency of the computation

G. Pederiva et al., “Machine Learning Algorithms for Hadron
Correlators from Lattice QCD”, 2020, Work in progress

17



Experimental Methods

(I Near Term: Improved analysis, simulations, and Al-driven detector design
» Improved sensitivity
» Faster Analysis = faster scientific output
» Accelerate simulations — ML for event generators

» Detector Design — Al helps steering the design (and eventually fine-tune) and can
capture hidden correlations among design parameters

dLong Term:
» Holistic approach to experimentation
» Standardized data formats

» Experiment design not limited by computation

18



Experimental Methods Examples: Reconstruction and
Analysis

injected

O Example 1: Particle Identification with Cherenkov Detectors

heR®
> |dentify charged particles by detected hit pattern RS
» Recent custom architecture combines VAE, CNN and

ANN achieving a fast and accurate reconstruction with @

capability for deeply learning the detector response E i
latent space -

1 € RM*d

CNN/MLP @,
Classifier

VAE
Decoder

C. Fanelli, JINST 15 (2020) 02, C02012

C. Fanelli and J. Pomponi Mach. Learn.:Sci.
Technol. (2020) 1, 015010

D. Derkach et al., NIMA 952 (2020) 161804

A. Maevskiy et al. J. Phys. Conf. Ser. (2020)
1525, 012097

Classification
Output

i c pm X 3

reconstructed

DeepRICH architecture

Features extracted by CNN 19



Experimental Methods Examples: Reconstruction and
Analysis

(J Example 2: Boosted Decision Trees to Search for Exotic Mesons in GlueX

» lIsolate events of interest from a disproportionately large background
» These ANN-based algorithms have the potential to offer vast improvements in both signal selection
efficiency and purity over more traditional techniques.

R. Barsotti and M.R. Shepherd (2020) JINST 15 P05021
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Experimental Methods Examples: Reconstruction and
Analysis

1 Example 3: automated (ML driven) design of observables

» NN to discover new observables that are sensitive to jet quenching and parton splitting
» Discovery of theoretical models via automated analysis

* Previous: Finding most sensitive observables to a model parameters—# Lai; 1810.00835
E

* Current focus (from a longer list): How much information is

contained in high-energy particle collisions and jets?

Lai, Mulligan, Ploskon, Ringer (2021) arXiv:2111.14589

Extract knowledge on complex
processes (e.g. jet quenching)
directly from data - human
understandable result (!)

- new guidance to experiment(s)
—> critical input for theory

1.0

o o
o )

True AA Rate

0.2 1

0.0

»®
-
*
.
*
R
*
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N
-
*
"
*

Jet
Jet + Background (Rmax = 0.25)
Jet + Background (Rmax = 1.0)

=1 Jet + Background (before subtraction)

T
0.2

T T T
0.4 0.6 0.8

False AA Rate

1.0

£
10!

10

107

10

10

106
5 10 15 20 5 10 15 20 5 10 15 20
! ! !

Next challenge?
-> Hadronization
= Long standing problem
= Impact in both NP and HEP
= Guidance for EIC experiments
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Experimental Methods Examples: Reconstruction and
Analysis

O Example 4: Charged Particle Tracking

» ANN and Deep Learning in the CLAS12 workflow provides a 6 times faster track reconstruction speed.
» Selection of the correct seed results in improved tracking efficiency and recovery of missing tracks with

accuracy of >99.8%. _ ,
G. Gavalian, et al., (2020) arXiv:2008.12860

Charged particles tracked using DCs Region 3' \ Wi 1 ol o Sonvenuonal Tracking
InSIde tOFOIda| fleld ‘ \‘\\ \ “‘\ ) ¥ Ratio of efficiencies
e  Each sector has 3 regions \x\ 3
e  Each region has 2 Super- \\ ‘Qt \ 1.1+
Layers Region 1 \ \ -
Super-Layer has 6 layers \\ : \ £1.0 f=0.99+0.0024x
Each Layer has 112 wires . { \ \ 2
;\‘ l‘ LLI
/ ! \\ Region 2 20.9f
Example: 2 fracks =
oy 8
L
] ~ 07| f=1.00+-0.0022x
f=1.00+-0.0040x
True track False frack
&
0.6 : : : . : : .
|/\““"i;\ O 10 20 30 40 50 60 70
N Beam Current (nA)

Super-Layer 5 Super-Layer 6



Experimental Methods Examples: Reconstruction and
Analysis

O Example 5: Event and signal classification

» Deep ANN and CNN allow to differentiate physics signal types from backgrounds
A. Jany et al., Eur. Phys. J. C (2021) 81:38

101
i
- ’ “
5 o oy
v ‘ ! - 5 . g =
=z 0.41 i ! Differentiate SSE/MSE in HPGe = X ]
z gy Lo :
021 ‘ Lty ;i'“ e il I 103 E
o st it i sl A ———————— s _ - -
= 0.0 . T =
> 203T| B
DE ;
g 101 4 Biag, | SEP before the cut =
0 F_J ~ A A 10~
S 107! SSE cut
S
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Experimental Methods Examples: Streaming Readout

Read out detector data in continuous parallel streams that are encoded with information about
when and where the data were taken

Streaming O All channels can be part of “the trigger”, no bias

O Simplification of readout: No custom trigger hardware and
firmware to implement & debug

O Enables sophisticated tagging/filtering algorithms

O Allows use of high-level programming languages

O Ease of scalability

O Takes advantage of emerging technologies

o Allows use of available Al/ML tools

o Allows use of heterogeneous computing

O Allows rapid turnaround of physics data

Many high-luminosity experments adopt the SRO scheme: LHCb, ALICE, AMBER, CBM, TPEX,
sPHENIX, STAR, EIC, SOLID, BDX, CLAS12, ...

24



Streaming Readout — Grand Challenges

Develop a proof of concept of quasi-instantaneous high-level nuclear physics analysis based on modern
statistics from a self-calibrating matrix of detector raw data synchronized to a reference time, without
intermediate data storage requirements with production systems developed for analysis

Key Elements Integrated whole-experiment model

> Streaming / \

» Calibration/ML real-time
> data calibration,
Distributed Computin Y el o handling alignment,

P © posedill readn;t' - and storage analysis, theory
> Heterogeneous ST m"}:::;m

> Statistical Methods K_\“‘ \%%

Many high-luminosity experments adopt the SRO scheme: LHCb, ALICE, AMBER, CBM, TPEX,
sPHENIX, STAR, EIC, SOLID, BDX, CLAS12, ...

Adapted from A. Boehnlein, R. Ent, R. Yoshida, “Grand Challenge in Readout and Analysis for Femtoscale Science (2018)

25



reaming Readout Examples

Automated Data Quality Monitoring Automated Alignment and Calibrations

Online Monitoring Tasks: Hy

. EL -the-sheif ML
1. identify different data-taking periods Use ML for a) online
* ltwasthe online monit: ardinatar's job change detection and b) online data-guality monitoring
humar-in-the was prone | 2. Calibrate different data-taking periods to a baseline

Developed Multi Scale Method:

Last Updated: 1427 sevomdis) ago il cleska i i

Autamatically identily changes in the
undartying probabiity distribution Re-calibeate im case of changes Monitor pedustals and study cosmics

Uise of DM o reconsiruct the kinematic
P oy ) = - T TTH. observables GF and x In the study of neutral
SR | = ) ) current DES events at he ZEUS experiment at
ERT B 100% | 1AW 100% | 100% ity il a s » 1 HERA.
MLF B RSER 1077 AR DRE5% i .
CNN |350112 96.11% [2B.11% 94.26% [94.26% 1. . s — - The parfmance of DNN-Dased reconsinucion
1 - - of DIS inematics s compared o he
performance of ihe electron method, the
Jacqust-Bionoel memod, and Me aouke-ange
meethods using data-sets Independent from
hase usad for ihe training

RMN | 36 BE40% 11.60%

signilicant improvernents In the resclulion of G2

The imglemnentation of Al assisted racking Inte the CLAS12 recansiruction workflow and " and x

provided a & times code spasdup, ‘ A —

Implemented neural network was able to reliabl ansiruct missing segment positions with . ) i ) = DiS measurements at upcoming EIC
aceuracy of =0.35 wires, and lead 1o rec sing tracks with accuracy of =99.8% ° o Triring it

Using examples from C. Fanelli’s presentation Crititical Path for the Compute-Detector Model for the EIC (2021)



Experimental Design: Design for Detector Systems

Al offers State Of The Art (SOTA) solutions to solve complex optimization problems in an efficient way

O Physics and detector simulations are critical for both initial design and optimization
of complex subdetector systems in NP experiments

O Typically, full detector design is studied once the subsystem prototypes are ready -
constraints from the full detector or outer layers are taken into consideration

1 Need to use advanced simulations which are computationally expensive

O Many parameters (and multiples objective functions): curse of dimensionality - r.
Bellman, Dyn. Program. Vol. 295 (1956)

O Entails establishing a procedural body of instructions — c. Fanelli et al. JINST 15.05 (2020):
PO5009

Example of a complex detector with
many subsystems: the EIC Detector-1

O The choice of a suitable algorithm is a challenge in itself (no free lunch theorem — reference design
D.H. Wolpert et al. 1997, Trans. Evol. Comp. 1, 67-82) and always requires some degree of
customization

d Non-differentiable terms

27



Experimental Design Examples: Design for Detector
SYSte mS Detector Modelﬁ;sed an

. . . observations,
optimization decision making
Example: Use A.l. to optimize the design during the R&D workflow
of large-scale detectors, i.e. simulating noisy and
computationally expensive black-box functions l
» Bayesian Optimization (BO), Evolutionary Algorithms (EA), etc Injection of Analysis of
> Multi-objective optimization (MOO) in multi-dimensional Physics —» Detector S High-level
. Simulation reconstruction of
design space Events events

Dual-RICH @I?IC: First EIC Paper using A!, an R&I? of npvel compos,tei gerogel+f|bgrs: EIC Fle.Ctrc.m Endcap EM Calorimetgr: . EIC Electron Hadron calorimeter:
automated, highly parallelized, self-consistent design with the Al optimizing mechanical Optimization of glaSS/CfV§ta| material selection novel glass for hadron identification
framework based on BO+ML to optimize the strength and resolution using evolutionary with MOO to make decision on resolution (how N
. ) ) by Cherenkov/signal in the same
Geant simulation of the dual-RICH. MOO. Geant4 + Autodesk (gmsh+elmer) it affects physics of interest), and crystal/glass material. May also be of interest for
PhotoSensor ] cost optimization.

other multi-purpose detectors.
T

1 T

o
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o
3
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~
T

Background rejection

particle

o
o
T

Reconstructed from tracks hitting /'R
the electron endcap EmCal |
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E. Cisbani, A. Del Dotto, C. Fanelli, M. Williams, V. Berdnikov, J. Crafts, E. Cisbani, C. V. Berdnikov, M. Bondi’, C. Fanelli, Y. Furletova, V. Berdnikov, C. Fagaélli,
..., T.Horn, et al 2020 JINST 15 P05009 Fanelli, T.Horn , R.. Trotta T.Horn, I. Larin, D. Romanov, R. Trotta T.Horn, P. Stepanov



Experimental Design Examples: Designing optimal
experiments

Example: Proton Compton Scattering

e Bayesian experimental design provides a framework in which experiments can be designed using the best experimental and theoretical
information available

o The utility function is designed to encode the goals of the experiment and the constraints inherent in carrying it out.

e Once the utility function and the possible designs have been specified, the optimal design is simply the scenario that maximizes the expected
utility function over the domain of possible designs.

All ag1 + fan ag1 — fan Uk .
02 The expected utility of
% proton differential
cross section

measurements. The
circles show the

100 200 3(I]0 100 260 360 1 (IJO 260 360 100 200 3[][}

Wiabk [Me\"’] Wab [.\le\’] Wiab [L\IBV] Wiab I\IEV]

optimal design
kinematics for five
measurement points at
the same energy but
different angles.

J.A. Melendez, et al., EPJA 57, 81 (2021)
29



Control and Optimization of Complex Accelerators

ML applications in accelerator facilities can provide data-driven digital models/twins for anomaly
detection, design optimization tools, and real time operational control/tuning

(JAccelerator Science
» Optics and lattice design
» Beam instrumentation design and optimization

» Reinforcement learning for controls

(J Accelerator Operations
» Optics and lattice optimization
» Target, charge stripper, collimation system

» Anomaly detection and mitigation

30



Example 1: Superconducting RF Cavity Fault
Classification

Anomaly detection and machine protection: ML-based solutions to challenges encountered in particle
accelerators are yielding promising results.
» ML cavity identification and fault classification models have an accuracy of ~85% and 78%

Fault Timeline
= Single_Cav — Multi_Cav — Quench = E_Quench — Quench_3ms — Quench_100ms — Microphonics — Controls_Fault — Other
No_Label
Other | |
1] e ] [ . [} u [} f . e o @
7 L ] .0 ¢ oo 8o (1] "0 08 f s e e @ ®wes (R ]
5 | [ | . | [ g .
5 f | f f f { o0 0 00 a0 0
4 [ ] e (1) - - L] ] e [ ] L ] t L] [ ] -
3 1 —1—# —® - | ) ] | -
2 ] [ ] ® e 0 ] [ ] " | [ ] [ ]
i @ L ] s 90 [ I = o © W ek we 0 ] 1 a0 " ae o0 L] 1 L ]

Multii See @ @ @ s st @ [} s m @ (] o 0 me @ [} i ? @ me 80 [} s o o s n @ I
2020-03-04 2020-03-06 2020-03-08 2020-03-10 2020-03-12 2020-03-14 2020-03-16 2020-03-18 2020-03-20 2020-03-22 2020-03-24
00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0

Fault vs Cavity Labels
1123 1L25
No_Label No_Label
Other 40 Other 40
Controls_Fault Controls_Fault
Microphonics I 30 Microphonics 3
Quench_100ms Quench_100ms
Quench_3ms 20 Quench_3ms 20
E_Quench === E_Quench
Quench 10 Quench — 10
Multi_Cav Multi_Cav i
Single_Cav 0 Single_Cav == 0
1 ] I | 1 ] I I 1 1 ] I ] 1 1 1 I 1 1 ] | I
Muli cavl cav2 «cav3 cav4 cav5 cavé cav7? cav8 Other No_Label Multi cavl cav2 cavl cav4d «cavS cavé cav7 cav8 Other No_Label

C. Tennant et al., Phys. Rev. Accel. Beams 23, 114601 (2020) 31



Example 2: UQ for Accelerator Anomalies

Predict upcoming faults before they happen using a combination of 0
uncertainty quantification and a deep Siamese architecture 2l
> Siamese model focuses on similarities between beam pulses g o
. . . 9 0,62 ————t——
» GP layer provides an uncertainty estimate R e
Performance improved ~4x over previous published results El L
Class Probability, Deterministic Model - Class Similarity, Deterministic Model o %0.2- ,,,,,,,,,,,,,,, . ,g’/ 0.000 0.001 0.002 0.003 0.604 0.005
- - % . | [ Train Set AUC:O.8854
E i I Test Set AUC:0.8842
°? e O'Oo.o ojz o.;4 0.%6 ofs 1.0

o
(=]
1)

o
o
o

0.2

0.04
G i 5 0.0 0.0
0.03
Completely miss identified the out Correctly identified as different
of domain sample. from the reference data

Classifier output Uncertainty
=
[N

W. Blokland, M. Schram, et al. (2021), arXiv:2110.12006

Adapted from M. Schram’s presentation at the JLab Hall C meeting (2022)

False Positive Rate

o Normal
e o Anomaly (1100)
o e Anomaly (1111)

-'i :"'i.): o
STz
: ‘-1"3?."23-;_.' :

YN

.

=

0.0 0.2 0.4 0.6 0.8 1.0
Classifier output 32




Example 3: ML-based surrogate models

Intelligent Control: Reinforcement Learning for Accelerator Control at FNAL ] i i
. . I - i, "
> Reduce beam losses in the FNAL booster by developing a ML model that ';ﬁ‘ MERY AT
. . . 50 A T I.vn:.‘v. b Y
provides an optimal set of actions for accelerator controls AOS B a1 SR
- S PR VSR LIV,
» Surrogate model and reinforcement learning policy model online control . TSt/ et Al
BRI et i 2 _100 ':
system e L
E—'LZ ‘l
D. Kafkes, M. Schram (2021), arXiv:2105.12847 ACTION e
| - h;., === Data Rolling Total Reward i
- L DQN Policy Model Rolling Total Reward |
Res u Its . . ’ 0 200 400Episodesmo 800 1000
The current Al based controller provides
~2x improvement. e A AG?" E"‘"““TME"T ey :
e ; If l‘ ! L i n ]
~ STATE, REWARD o R DL ALl
({gg(r;uez\a/c)or _ SRR : “,ll v | |" v
Recycler _‘%7100 i l'.l ': \ At "u
p abort ‘p\\[i(SGEV) SOr ? %12‘ 1 :I EI“ I
e = : {IEE A
? —-15.0 E :: :[l%
(¢) -17.5 1 EI
DO detector — I A, I! ! 1
DO ~20.0 === Data Rolling Total Reward .
! 24 INPUT UNITS HIDDEN UNITS OUTPUT UNITS —— DQN Policy Model Rolling Total Rewardé

Episodes

Adapted from M. Schram’s presentation at the JLab Hall C meeting (2022)



Al in Nuclear Data

[ Large potential of Al/ML algorithms to address critical
Nuclear Data problems — already used for many tasks
in the “nuclear data pipeline”

Data Activities (WANDA) in March 2020:

@tps://conferences.Ibl.gov/event/292/ /

O ML use anticipated to grow exponentially in nuclear data

» offers new approaches to longstanding problems
e TensorFlow and Pytorch libraries speed up ML utilization
e Early-career researchers eager to use ML

1 new trends include
* transforming workflows with ML-based approaches
* “physics-aware” ML models
e using ML to guide experiments, theory, and evaluations
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L. Neufcourt et al, PRL 122 (2019) 062502

Examples Al in Nuclear Data

Robust UQ

[ Example 1: Physics aware ML models

Predict ground- and excited state energies from theory model; better
predictions than traditional evaluation tools

1 Example 2: ML-guided search

0.0 0.2 0.4 0.6

Random forests were used to augment expert knowledge in pinpointing errors in nuclear data and
benchmark experiments leading to bias in simulating criticality benchmarks, e.g., ML found

19F(n,inl) missed by experts
, D. Neudecker et al. Nucl. Data Sheets 167 (2020) 36
SVR Outlier Detector Results . . R

s Detected Outlier 5F
Experimental Data

N N
)] o]
1

N
sy

<

e

b2 :r_?s‘l
> 1
n

T

g
[N
1

N
o
1
—_

Cross Section (barns)

=
©
1

\I‘ \ r\/ I\ ‘
| { AI \
ENDF/B-VILO | | ‘.‘
L6- | | —— JENDL-4.0 \ H
: ¢ Broder 1969 |

239py(n,f) Cross-Section (b)
o
w

ll

T T T T LN B B B | L L L — 1
Energy (MeV) Incident Energy (MeV)



Educational Activities since 2019

Please feel free to propose new schools and/or update the list here.

1.

The FRIB-TA Summer School: Machine Learning Applied to Nuclear Physics, FRIB/NSCL (MSU)from
May 20 to 23, 2019; organizers and teachers: Matthew Hirn (MSU), Morten Hjorth-Jensen (MSU) and
Michelle Kuchera (Davidson)

. Nuclear TALENT course Learning from Data: Bayesian Methods and Machine Learning, in York, UK,

June 10-28, 2019; Teachers and organizers Christian Forssén, Chalmers University of Technology,
Sweden, Dick Furnstahl, Ohio State University, USA, Daniel Phillips, Ohio University, USA

. Nuclear TALENT School on Machine learning from 22 June 2020 to 03 July 2020. Teachers and

organizers: Daniel Bazin (MSU), Morten Hjorth-densen (MSU), Michelle Kuchera (Davidson), Sean
Liddick (MSU), Raghuram Ramanujan (Davidson)

. Nuclear TALENT School on Machine learning from 19 July 2021 to 30 July 2021. Teachers and

organizers: Daniel Bazin (MSU), Morten Hjorth-densen (MSU), Michelle Kuchera (Davidson), Sean
Liddick (MSU), Raghuram Ramanujan (Davidson)

. Intensive course on Machine Learning at FRIB/MSU, summer 2019; teacher Morten Hjorth-densen, MSU
. Four two-week intensive course on Machine Learning for Nuclear Physics held at Ganil, France, 2019,

2020, 2021 and 2022. Teacher and organizer Morten Hjorth-densen (MSU)

. Al4NP Winter School, 11-15 Jan 2021, (Virtual). Organizers Amber Boehnlein (JLAB), Paulo Bedaque
(University of Maryland), Tanja Horn (Catholic University of America)
. 20227

Adapted from M. Hjorth-Jensen’s presentation at KTH, Frontiers in Nuclear Structure Theory (May 2022)
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Example: 2021 Al4NP Winter School

https://indico.jlab.org/event/409/overview

Ai 4 N P 11-15 January, 2021 [ 361 registered participants

WINTER SCHOOL Virtual » Daily attendance ~100-200
» Experience level ranging from absolute

11-15 January 2021

beginner to expert

US/Eastern timezone

O Artificial Intelligence (Al) is a rapidly developing field focused on computational technologies that can

dF jor lecture topi
Timetable be trained, with data, to augment or automate human skill. A subset of Al is machine learning (ML),
which is usually grouped into supervised, unsupervised and reinforcement learning. Nuclear Physics is > N e u ra I N etWO r ks a n d D L
Registration big data: the gigantic data volumes produced in modern experiments now and over the next decade are

reaching scales and complexities that require computational methods for tasks such as big data

Participant List analytics, design of new detectors, controls, and calibration systems. Al has the potential to provide the > M H I C I d
methodologies to optimize operating parameters and perform theoretical calculations of nuclear many- Va r I at I 0 n a M O nte a r O a n M L
body systems.
The AI4NP Winter School will give the participants a deeper understanding on what Artificial Intelligence > D t t D 1 g O pt. m 1 t.
and Machine Learning are and how they can be used to analyze nuclear physics data, design new e ec O r eS I n l I Za l 0 n S
detectors, controls, and calibration systems for nuclear physics experiments and perform theoretical
calculations of nuclear many-body systems. The Al4NP lecture topics will emphasize active Nuclear

Physics research, both experiment and theory, that relies on Al/ML techniques, as well as synergies > D a ta S et fe a t u re ext ra Ct i O n S

between the computer science and the NP communities and inspire areas for possible collaboration in
order to foster vital contributions to urgent and long-term challenges for nuclear physics.

Organizers

Paulo Bedaque (UMD), Amber Boehnlein (JLab), and Tanja Horn (CUA) AlIANP Winter School Partici pation
Sponsared by Department of Energy, Office of Science, Office of Nuclear Physics

gy, mCATHOLIC

- “\ UNIVERSITY '
4@' OFAMERICA@ .ggf,f/eZon Lab

Ly = ~
dRyine

U.S. DEPARTMENT OF

WENERGY

= USA = (Canada =Europe = South America = Asia = Australia 37




Observations and Outlook

L The areas where NP research can benefit from Al/ML are ubiquitous, lots of ongoing activities

NP researchers already have the talent and many of the tools required for this revolution — lots of
ongoing activities

( NP addresses challenges that are not addressed in current technologies
NP presents data sets that expose limitations of cutting edge methods

O To solve the many complex programs in the field and facilitate discoveries strong collaborations
between NP, Al/ML/data science, and industry would be beneficial for all parties

L Education is key to increase the level of Al-literacy — research programs and curricula in Al/ML can
help to attract students

Tremendous interest and activity in Al/ML in the Nuclear Physics Community
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