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A simple perspective on the interface between 
AI and Physics

 Statistics, data science, and AI/ML form important fields of research in modern science.

 They describe how to learn and make predictions from data, as well as allowing the extraction of key 
information about physical process and the underlying scientific laws based on large datasets. 

 Recent advances in AI capabilities are being applied to advance scientific discovery in the physical sciences 
(Carleo et al. RMP 91 (2019) 045002; Deiana et al. (2021), arXiv:2110.13041).
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 Nuclear physics covers a huge span of degrees of freedom, energy scales and length scales, ranging from our 
basic understanding of fundamental constituents of matter to the structure of stars and the synthesis of the 
elements in the Cosmos.
 The broad aims of nuclear physics as a field corresponds to a highly distributed scientific enterprise. These 

efforts, utilizing arrays of data types across size and energy scales, create a perfect environment for 
applications of AI/ML

Introduction: AI in Nuclear Physics
A. Boehnlein et al., Review of 
Modern Physics (2022), in press,  
arXiv:2112.02309
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https://arxiv.org/pdf/2112.02309.pdf


• Over 1,000 scientists participated in four town 
halls during the summer of 2019

• Research Opportunities in AI 
• Biology, Chemistry, Materials,
• Climate, Physics, Energy, Cosmology
• Mathematics and Foundations
• Data Life Cycle
• Software Infrastructure
• Hardware for AI
• Integration with Scientific Facilities

• Modeled after the Exascale Series in 2007

https://www.anl.gov/ai-for-science-report

Context: AI for Science – what’s next after Exascale
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AI in Nuclear Physics – Grand Challenges
 Harness the physics program of the Electron-Ion Collider (EIC)

 AI/ML will help guarantee maximum science output from the EIC
 Realize the science potential of FRIB

 A variety of AI/ML tools will be developed to address specific needs including beam generation, 
event characterization, detector response, experiment optimization and data analysis

 Event Reconstruction in Nuclear Physics
 AI techniques for reconstruction of tracks in time projection chambers at FRIB, and for heavy ion 

collisions
 Improve Tracking Algorithms

 AI/ML to significantly improve tracking at all NP accelerator facilities
 Particle Identification

 AI/ML to complement existing Monte Carlo methods for PID

 Gamma-Ray Energy Tracking Array (GRETA): AI/ML to reconstruct the path of multiple gamma rays 
from measured interaction positions and deposited energies 
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Components needed for successful AI in Science Initiative
Application-specific solutions based on hardware/software/algorithm co-design 

Research in AI algorithms and foundations

Development of AI software infrastructure

AI-specific computing architectures and hardware

Successful integration of these components will require

1. A full partnership between all areas of the Office of Science
2. Engagement of the National Laboratories and their user facilities
3. Involvement of the university and private industry research community
4. Mechanisms for collaborative projects with agencies such as the NSF, NIH, NIST 

and DOD
5. Collaboration with expert organizations from similarly minded countries
6. An organized process for dissemination to the scientific community

https://science.osti.gov/ascr/ascac/Meetings/202009

Context: 2020 ASCAC Subcommittee on: ‘AI/ML, Data-intensive 
Science and High-Performance Computing’ (Subcommittee on ‘AI 
for Science’)
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Based on this and many subsequent activities: 
Tremendous interest in AI/ML in the Nuclear 
Physics Community

 3 day workshop with 180 attendees with plenary breakout format
 1 day pre-meeting ‘hackathon’
 8 Break out groups to address aspects of Theory, Experiment, and 

Accelerator
 The results were summarized in a report containing an assessment 

of ongoing efforts

 Also summary of the breakout session and additional topical 
areas (relativistic heavy Ions, Project 8, NEXT and Wanda) not 
present at the workshop

 Identified need for workforce development and education and 
a need for cross disciplinary collaborations.

P. Bedaque et al., Eur.Phys.J.A 57 (2021) 3, 100

Activities in Nuclear Physics: 2020 AI for NP Workshop
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https://link.springer.com/article/10.1140%2Fepja%2Fs10050-020-00290-x


 Game Changers in Nuclear Theory
 LQCD: sign problem, extraction of physical observables, propagator inversion

 Global QCD analysis

 Identifying rare events

 Microscopic description of nuclear fission, origin of the elements, quantified computation of heavy nuclei, correlations 
and emergent phenomena, spectroscopic quality nuclear density functional, neutron star and dense matter EOS

 Holistic approach to experimentation – expert systems to increase scientific output
 Intelligently combine disparate data sources

 Real time analysis and feedback

 Experiment Design not limited by computation
 Data compactification, sophisticated triggers, and fast online analysis

 Improving simulation and Analysis
 Use AI/ML to improve the sensitivity of current instruments and accuracy of data

 Decrease simulation and analysis time

 Accelerator Design and operations

A.I. for NP: Priority Research Directions
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 Need for workforce development

 Educational activities

 Need for broader community

 Need for collaboration

 Need for problem-specific tools
 NP applications are unique in that they are often aimed at accelerating calculation, e.g., 

o Evaluation of models where one can use AI techniques to identify the most promising calculative pathways
o Simulations where AI-determined parameterizations can be used to circumvent performance limiting 

elements
 Enabling infrastructure for AI in NP

 Need for standardized frameworks
 Need for comprehensive data management
 Need for adequate computing resources

 Need for uncertainty quantification

A.I. for NP: Community Identified Needs and 
Communalities

10



Areas of Active Research 
in AI/ML in NP

 Invited article for Review of Modern Physics A. 
Boehnlein et al. (2022) in press,  arXiv:2112.02309

 Focuses on recent application of AI/ML in NP 
covering topics in:
o Nuclear Theory 
o Experimental Methods
o Accelerator Technology 
o Nuclear Data
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AI/ML in Nuclear Theory and Lattice QCD

 Properties of heavy nuclei and nuclear density functions theory
 Crucial for understanding rare isotopes

 Nuclear Properties - Nuclear Shell Model
 Improve the predictive power of nuclear models – model residuals

 Discovering nucleonic correlations and emergent phenomena
 Discover correlations in calculations of nuclear wave functions that use underlying forces

 Nuclear femtography – parton distribution functions
 Global feature extraction from (large) datasets

 Neutron star and dense matter equation of state
 Deduce nuclear matter equation of state from intermediate-energy heavy-ion collisions data

 Phase transitions and estimators for correlation functions
 Ensemble generation in lattice QCD

 Scalability, compact variables, sign problem

Topics in Low-Energy, Medium-Energy, High-Energy Nuclear Theory and Lattice QCD
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Nuclear Theory Examples
 Example 1: Bayesian Model Averaging to Quantify Limits of the nuclear landscape

Constrained density functional theory calculations in multidimensional 
collective spaces with Bayesian Model Averaging
L. Neufcourt et al., PRL 122 (2019) 062502
L. Neufcourt et al,, Phys, Rev, C 101 (2020) 014319
V. Kejzlar et al., J. Phys. G 47 (2020) 094001 L. Neufcourt et al., Phys. Rev. C 101 (2020) 044307
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Nuclear Theory Examples
 Example 2: Many body-variational calculations with ANN

Demonstrated predictive power of 
ANNs for converged solutions of weakly 
converging simulations of light nuclei 
with up to six nucleons

C. Adams et al., Phys. Rev. Lett. 127 (2021) 022502
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Nuclear Theory Examples
 Example 3: Monte Carlo approach for Bayesian inference

Simultaneous extraction of a variety of Quantum Correlation Functions for 
nuclear femtography

J.J. Ethier et al., PRL 119 (2017) 13, 132001; Moffat et al., (2021) arXiv:2101.04664; Sato et al., PRD 101 (2020) 7, 074020
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Nuclear Theory Examples
 Example 4: Bayesian analysis to constrain model parameters

Generative models to approximate model output
ANN help to reveal correlations hidden in high-
dimensional data
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Lattice QCD Examples
 Example 1: Field configurations and properties

 Example 2: Speed up Hadron Correlator Computation

Boosted Decision Trees and ANNs to reduce the cost of 
iterative solvers for quark propagator by relating solutions 
to the system computed at different precision
Enormous increase in efficiency of the computation

Towards elimination of critical slowing down in MCMC for 
scalar φ4 theory – construct normalizing flows via ANN
NN to predict lattice action parameters from field 
configurations P. E.Shanahan et al., Phys. Rev. D 97 (2018) 094506

M.S. Albergo et al., Phys. Rev. D 100 (2019) no.3 034515

G. Pederiva et al., “Machine Learning Algorithms for Hadron 
Correlators from Lattice QCD”, 2020,  Work in progress
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Experimental Methods

Near Term: Improved analysis, simulations, and AI-driven detector design
 Improved sensitivity

 Faster Analysis  faster scientific output

 Accelerate simulations – ML for event generators

 Detector Design – AI helps steering the design (and eventually fine-tune) and can 
capture hidden correlations among design parameters

Long Term:
 Holistic approach to experimentation

 Standardized data formats

 Experiment design not limited by computation

18



Experimental Methods Examples: Reconstruction and 
Analysis
 Example 1: Particle Identification with Cherenkov Detectors

 Identify charged particles  by detected hit pattern
 Recent custom architecture combines VAE, CNN and 

ANN achieving a fast and accurate reconstruction with 
capability for deeply learning the detector response

C. Fanelli, JINST 15 (2020) 02, C02012

C. Fanelli and J. Pomponi Mach. Learn.:Sci. 
Technol. (2020) 1, 015010

D. Derkach et al., NIMA 952 (2020) 161804

A. Maevskiy et al. J. Phys. Conf. Ser. (2020) 
1525, 012097
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DeepRICH architecture

Features extracted by CNN



Experimental Methods Examples: Reconstruction and 
Analysis
 Example 2: Boosted Decision Trees to Search for Exotic Mesons in GlueX

 Isolate events of interest from a disproportionately large background 
 These ANN-based algorithms have the potential to offer vast improvements in both signal selection 

efficiency and purity over more traditional techniques.
R. Barsotti and M.R. Shepherd (2020) JINST 15 P05021

Showers matched 
to charged 
particles 

Photon candidate 
showers

Type 2

Type 0

Radius of the circle proportional to the 
energy of the shower≈
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Experimental Methods Examples: Reconstruction and 
Analysis
 Example 3: automated (ML driven) design of observables
 NN to discover new observables that are sensitive to jet quenching and parton splitting
 Discovery of theoretical models via automated analysis

Lai, Mulligan, Ploskon, Ringer (2021) arXiv:2111.14589
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Experimental Methods Examples: Reconstruction and 
Analysis

G. Gavalian, et al., (2020) arXiv:2008.12860

 ANN and Deep Learning in the CLAS12 workflow provides a 6 times faster track reconstruction speed.
 Selection of the correct seed results in improved tracking efficiency and recovery of missing tracks with 

accuracy of >99.8%.

 Example 4: Charged Particle Tracking
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Charged particles tracked using DCs 
inside toroidal field:

● Each sector has 3 regions
● Each region has 2 Super-

Layers
● Super-Layer has 6 layers
● Each Layer has 112 wires



Experimental Methods Examples: Reconstruction and 
Analysis
 Example 5: Event and signal classification

 Deep ANN and CNN allow to differentiate physics signal types from backgrounds

A. Jany et al., Eur. Phys. J. C (2021) 81:38

Differentiate SSE/MSE in HPGe

23



24

Experimental Methods Examples: Streaming Readout

 All channels can be part of “the trigger”, no bias

 Simplification of readout: No custom trigger hardware and 
firmware to implement & debug

 Enables sophisticated tagging/filtering algorithms

 Allows use of high-level programming languages

 Ease of scalability

 Takes advantage of emerging technologies

o Allows use of available AI/ML tools

o Allows use of heterogeneous computing

 Allows rapid turnaround of physics data

Read out detector data in continuous parallel streams that are encoded with information about 
when and where the data were taken

Many high-luminosity experments adopt the SRO scheme: LHCb, ALICE, AMBER, CBM, TPEX, 
sPHENIX, STAR, EIC, SOLID, BDX, CLAS12, …
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Streaming Readout – Grand Challenges

Integrated whole-experiment model

Many high-luminosity experments adopt the SRO scheme: LHCb, ALICE, AMBER, CBM, TPEX, 
sPHENIX, STAR, EIC, SOLID, BDX, CLAS12, …

Key Elements

 Streaming

 Calibration/ML

 Distributed Computing

 Heterogeneous

 Statistical Methods

Develop a proof of concept of quasi-instantaneous high-level nuclear physics analysis based on modern 
statistics from a self-calibrating matrix of detector raw data synchronized to a reference time, without 
intermediate data storage requirements with production systems developed for analysis

Adapted from A. Boehnlein, R. Ent, R. Yoshida, “Grand Challenge in Readout and Analysis for Femtoscale Science (2018)



Streaming Readout Examples
Automated Data Quality Monitoring

Event Reconstruction

Automated Alignment and Calibrations

Reconstruction of DIS Events

Using examples from C. Fanelli’s presentation Crititical Path for the Compute-Detector Model  for the EIC (2021)
26



 Physics and detector simulations are critical for both initial design and optimization 
of complex subdetector systems in NP experiments

 Typically, full detector design is studied once the subsystem prototypes are ready -
constraints from the full detector or outer layers are taken into consideration

 Need to use advanced simulations which are computationally expensive

 Many parameters (and multiples objective functions): curse of dimensionality - R. 
Bellman, Dyn. Program. Vol. 295 (1956)

 Entails establishing a procedural body of instructions – C. Fanelli et al. JINST 15.05 (2020): 
P05009

 The choice of a suitable algorithm is a challenge in itself (no free lunch theorem –
D.H. Wolpert et al. 1997, Trans. Evol. Comp. 1, 67-82) and always requires some degree of 
customization

 Non-differentiable terms

AI offers State Of The Art (SOTA) solutions to solve complex optimization problems in an efficient way

Experimental Design: Design for Detector Systems

Example of a complex detector with 
many subsystems: the EIC Detector-1 
reference design
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E. Cisbani, A. Del Dotto, C. Fanelli,  M. Williams, 
…, T. Horn,  et al 2020 JINST 15 P05009

Dual-RICH @EIC: First EIC paper using AI, an 
automated, highly parallelized, self-consistent 
framework based on BO+ML to optimize the 
Geant simulation of the dual-RICH.

V. Berdnikov, J. Crafts, E. Cisbani, C. 
Fanelli, T.Horn , R.. Trotta

R&D of novel composite aerogel+fibers: 
design with the AI optimizing mechanical 
strength and resolution using evolutionary 
MOO. Geant4 + Autodesk (gmsh+elmer) 

V. Berdnikov, M. Bondi’, C. Fanelli,  Y. Furletova, 
T.Horn, I. Larin, D. Romanov, R. Trotta

EIC Electron Endcap EM Calorimeter: 
Optimization of glass/crystal material selection 
with MOO to make decision on resolution (how 
it affects physics of interest), and crystal/glass 
cost optimization. 

Example: Use A.I. to optimize the design during the R&D 
of large-scale detectors, i.e. simulating noisy and 
computationally expensive black-box functions 
 Bayesian Optimization (BO), Evolutionary Algorithms (EA), etc 
 Multi-objective optimization (MOO) in multi-dimensional 

design space

Experimental Design Examples: Design for Detector 
Systems

EIC Electron Hadron calorimeter: 
novel glass for hadron identification 
by Cherenkov/signal in the same 
material. May also be of interest for 
other multi-purpose detectors.

V. Berdnikov, C. Fanelli, 
T.Horn, P. Stepanov
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Experimental Design Examples: Designing optimal 
experiments
Example: Proton Compton Scattering

J.A. Melendez, et al., EPJA 57, 81 (2021)
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Accelerator Science

 Optics and lattice design

 Beam instrumentation design and optimization

 Reinforcement learning for controls

Accelerator Operations

 Optics and lattice optimization

 Target, charge stripper, collimation system

 Anomaly detection and mitigation

Control and Optimization of Complex Accelerators
ML applications in accelerator facilities can provide data-driven digital models/twins for anomaly 
detection, design optimization tools, and real time operational control/tuning
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Anomaly detection and machine protection: ML-based solutions to challenges encountered in particle 
accelerators are yielding promising results. 

 ML cavity identification and fault classification models have an accuracy of ~85% and 78%

C. Tennant et al., Phys. Rev. Accel. Beams 23, 114601 (2020)

Example 1: Superconducting RF Cavity Fault 
Classification
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Example 2: UQ for Accelerator Anomalies
Predict upcoming faults before they happen using a combination of 
uncertainty quantification and a deep Siamese architecture

 Siamese model focuses on similarities between beam pulses
 GP layer provides an uncertainty estimate

Performance improved ~4x over previous published results

Adapted from M. Schram’s presentation at the JLab Hall C meeting (2022)
32

W. Blokland, M. Schram, et al. (2021), arXiv:2110.12006



Example 3: ML-based surrogate models

Adapted from M. Schram’s presentation at the JLab Hall C meeting (2022)

Intelligent Control: Reinforcement Learning for Accelerator Control at FNAL
 Reduce beam losses in the FNAL booster by developing a ML model that 

provides an optimal set of actions for accelerator controls
 Surrogate model and reinforcement learning policy model online control 

system
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D. Kafkes, M. Schram (2021), arXiv:2105.12847



AI in Nuclear Data
 Large potential of AI/ML algorithms to address critical 

Nuclear Data problems – already used for many tasks 
in the “nuclear data pipeline”

Example: Workshop on Applied Nuclear 
Data Activities (WANDA) in March 2020: 
https://conferences.lbl.gov/event/292/

 ML use anticipated to grow exponentially in nuclear data
• offers new approaches to longstanding problems
• TensorFlow and Pytorch libraries speed up ML utilization
• Early-career researchers eager to use ML

 new trends include
• transforming workflows with ML-based approaches
• “physics-aware” ML models
• using ML to guide experiments, theory, and evaluations 34



Examples AI in Nuclear Data
 Example 1: Physics aware ML models

Predict ground- and excited state energies from theory model; better 
predictions than traditional evaluation tools

L. Neufcourt et al, PRL 122 (2019) 062502

 Example 2: ML-guided search

Random forests were used to augment expert knowledge in pinpointing errors in nuclear data and 
benchmark experiments leading to bias in simulating criticality benchmarks, e.g., ML found 
19F(n,inl) missed by experts

D. Neudecker et al. Nucl. Data Sheets 167 (2020) 36
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Educational Activities since 2019

Adapted from M. Hjorth-Jensen’s presentation at KTH, Frontiers in Nuclear Structure Theory (May 2022)
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 361 registered participants
 Daily attendance ~100-200
 Experience level ranging from absolute 

beginner to expert
 Four major lecture topics

 Neural Networks and DL
 Variational Monte Carlo and ML
 Detector Design Optimizations
 Data set feature extractions

https://indico.jlab.org/event/409/overview

11-15 January 2021
Virtual

Example: 2021 AI4NP Winter School
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 The areas where NP research can benefit from AI/ML are ubiquitous, lots of ongoing activities

 NP researchers already have the talent and many of the tools required for this revolution – lots of 
ongoing activities

 NP addresses challenges that are not addressed in current technologies

 NP presents data sets that expose limitations of cutting edge methods

 To solve the many complex programs in the field and facilitate discoveries strong collaborations 
between NP, AI/ML/data science, and industry would be beneficial for all parties 

 Education is key to increase the level of AI-literacy – research programs and curricula in AI/ML can 
help to attract students

Observations and Outlook

Tremendous interest and activity in AI/ML in the Nuclear Physics Community
38
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