Cosmic Formation of the (Heavy) Elements And Rare Isotope Experiments at FRIB

Hendrik Schatz

Facility for Rare Isotope Beams and Dept. of Physics and Astronomy Michigan State University

Cosmic Formation of the Elements: Open Question at the Beginning of the Century

2003 "Committee on the Physics of the Universe":11 Science Questions for the New Century:How were the elements from iron to uranium made

Elements from "Iron" to Uranium:

- Half by slow neutron capture (s-process)
 - In red giant stars
- Half by rapid neutron capture (r-process)
 - Site?

A New Picture of Nucleosynthesis – A Continuum (Zoo?) of Processes

Evidence from metal poor stars – fossils of chemical evolution + current understanding of nuclear physics

A More Complex (complete?) Picture of the Origin of the "r-process" Elements is Emerging

 \rightarrow Rare Isotopes are Key in All These Possible Sites

COINCIDE OF ADVANCES IN BROAD RANGE OF AREAS ACTOSS FIELDS COINCIDE – Unique Opportunity for Nuclear Astrophysics

The new CeNAM Collaboration builds on the Joint Institute for Nuclear Astrophysics to form such a community

Center for Nuclear Astrophysics Across Messengers CeNAM

- Joint Institute for Nuclear Astrophysics has brought together nuclear scientists and astronomers since 2003 (jinaweb.org)
- The new Center for Nuclear Astrophysics Across Messengers
 Links
 - 57 institutions in 11 countries
 - 12 Core Institutions in US and Canada (with budget)
 - Diverse range of institutions: 30 US Research universities of various sizes, 9 Minority Serving Institutions, 4 US National Laboratories + NASA, Carnegie Observatories

International Research Network for Nuclear Astrophysics (IReNA)

- CeNAM will take advantage of the International Research Network for Nuclear Astrophysics (IReNA), a NSF AccelNet network of networks
- IReNA will links 8 international networks in nuclear astrophysics spanning 41 countries

www.irenaweb.org

Horizons: Nuclear Astrophysics in the 2020s and Beyond

H Schatz^{1,2,3}, A D Becerril Reyes^{2,3}, A Best^{4,5}, E F Brown^{1,2,6,3}, K Chatziioannou^{7,8}, K A Chipps^{9,10}, C M Deibel¹¹, R Ezzeddine^{12,3}, D K Galloway^{13,14,15}, C J Hansen^{16,17,18}, F Herwig^{19,3}, A P Ji^{20,21}, M Lugaro^{22,23,13}, Z Meisel^{24,3}, D Norman²⁵, J S Read²⁶, L F Roberts²⁷, A Spyrou^{1,2,3}, I Tews²⁸, F X Timmes^{29,3}, C Travaglio³⁰, N Vassh³¹, C Abia³², P Adsley³³, S Agarwal^{34,3}, M Aliotta³⁵, W Aoki^{36,37}, A Arcones^{38,39}, A Aryan⁴⁰, A Bandyopadhyay⁴⁰, A Banu⁴¹, D W Bardayan^{42,3}, J Barnes⁴³, A Bauswein³⁹, T C Beers^{42,3}, J Bishop⁴⁴, T Boztepe⁴⁵, B Côté^{19,22,3}, M E Caplan⁴⁶, A E Champagne^{47,48}, J A Clark^{49,3}, M Couder^{42,3}, A Couture⁵⁰, S E de Mink^{51,52}, S Debnath⁵³, R J deBoer⁵⁴, J den Hartogh²², P Denissenkov^{19,3}, V Dexheimer⁵⁵, I Dillmann^{56,19,3}, J E Escher⁵⁷, M A Famiano^{34,3,58}, R Farmer⁵¹, R Fisher⁵⁹, C Fröhlich^{60,3}, A Frebel⁶¹, C Fryer⁶², G Fuller⁶³, A K Gangulv⁶⁴, S Ghosh⁶⁰, B K Gibson⁶⁵, T Gorda^{66,67}, K N Gourgouliatos⁶⁸, V Graber^{69,70}, M Gupta⁷¹, W Haxton^{72,73}, A Heger^{13,14,74,3}, W R Hix^{9,10}, W C G Ho⁷⁵, E M Holmbeck^{76,3}, A A Hood⁴⁴, S Huth^{66,77}, G Imbriani⁴, R G Izzard⁷⁸, R Jain^{1,2,3}, H Jayatissa⁷⁹, Z Johnston^{1,3}, T Kajino^{36,37,80}, A Kankainen⁸¹, G G Kiss⁸², A Kwiatkowski^{56,19}, M La Cognata⁸³, A M Laird⁸⁴, L Lamia^{85,83,86}, P Landry⁸⁷, E Laplace^{88,52}, K D Launey¹¹, D Leahy⁸⁹, G Leckenby^{31,90}, A Lennarz^{31,91}, B Longfellow⁵⁷, A E Lovell²⁸, W G Lynch^{1,2}, S M Lyons^{92,3}, K Maeda⁹³, E Masha⁹⁴, C Matei⁹⁵, J Merc^{96,97}, B Messer^{98,10}, F Montes^{2,3}, A Mukherjee^{99,100}, M Mumpower^{28,62,3}, D Neto¹⁰¹, B Nevins^{1,2,3}, W G Newton¹⁰², L Q Nguyen⁵⁴, K Nishikawa¹⁰³, N Nishimura^{104,105}, F M Nunes^{2,1}, E O'Connor¹⁰⁶, B W O'Shea^{6,1,2,3}, W-J Ong^{57,3}, S D Pain^{9,10}, M A Pajkos^{1,6,3}, M Pignatari^{22,107,108}, R G Pizzone⁸³, V M Placco²⁵, T Plewa¹⁰⁹, B Pritychenko¹¹⁰, A Psaltis^{38,108}, D Puentes^{1,2}, Y-Z Qian¹¹¹, D Radice^{112,113,114}, D Rapagnani^{4,5}, B M Rebeiro^{115,116}, R Reifarth¹⁶, A L Richard^{57,2}, N Rijal², I U Roederer^{117,3}, J S Rojo¹¹⁸, J S K¹¹⁹, Y Saito^{90,56}, A Schwenk^{66,77,120}, M L Sergi^{85,83}, R S Sidhu^{39,120,35}, A Simon⁵⁴, T Sivarani¹²¹, Á Skúladóttir^{122,123}, M S Smith⁹, A Spiridon¹²⁴, T M Sprouse^{28,62}, S Starrfield²⁹, A W Steiner^{125,9}, F Strieder¹²⁶, I

Sultana^{127,3}, R Surman^{54,3}, T Szücs⁸², A Tawfik¹²⁸, F
Thielemann^{129,30}, L Trache¹²⁴, R Trappitsch^{130,108}, M B Tsang²,
A Tumino^{131,83}, S Upadhyayula³¹, J O Valle Martínez¹³², M Van der Swaelmen¹²³, C Viscasillas Vázquez¹³³, A Watts⁵², B
Wehmeyer^{22,134}, M Wiescher^{42,35,3}, C Wrede^{1,2}, J Yoon^{135,3}, R G
T Zegers^{1,2,3}, M A Zermane¹³⁶, M Zingale¹³⁷

Organized by JINA, IReNA Partner Networks

- 579 participants JINA Horizon Horizon Meeting December 2020
- White Paper: 165 co-authors from 20 countries
- Includes:
 - Scientific vision for the field
 - DEIA vision for the field
 - Needs of early career scientists
 - Role of interdisciplinary centers and networks and the importance of collaboration
- Currently being refereed available for scientists on arXiv

Facility for Rare Isotope Beams (FRIB) Provides New Opportunities for Nuclear Astrophysics

 FRIB is a \$730 million scientific user facility funded by the Department of Energy Office of Science (DOE-SC), Michigan State University, and the State of Michigan and located at Michigan State University in the US

> Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

- First FRIB experiments have begun in May 2022
- Unique opportunities for Nuclear Astrophysics

FRIB Provides Fast, Stopped, and Reaccelerated Beams

FRIB Provides Fast, Stopped, and Reaccelerated Beams

Are Neutron Star Mergers the Site of the Main R-process?

Direct Evidence for synthesis and ejection of large amounts of heavy elements **Open nucleosynthesis questions:**

- What elements do NS mergers make?
- Are NS mergers the only source of r-process elements? (Probably not)
- What do observed heavy element features tell us about the engine and dense matter?
- ightarrow All these require nuclear physics

Models Identify r-process Nuclear Physics

Thanks to Jonas Lippuner and Luke Roberts

FRIB Laboratory, Michigan State University U.S. Department of Energy Office of Science National Science Foundation Radice et al. 2016

Nuclear Uncertainties Prevent Meaningful Prediction of Elements Created in NS Mergers

Rare isotope physics identified:

Example: nuclear masses for the r-process

FRIB Experiments:

FRIB Decay Station Initiator Future: Full FDS (ORNL +ANL,MSU led)

→ Half-lives
 → βn emission
 → n-capture

LEBIT Penning Trap (MSU led)

S800 Spectrometer – Future: HRS (CMU +WMU,MSU led)

Complementary Techniques used at FRIB to directly measure (α ,n) reactions with reaccelerated beams

HABANERO Neutron Detector

MUSIC Active Target Detector

FRIB Laboratory, Michigan State University U.S. Department of Energy Office of Science

National Science Foundation

SECAR Recoil Separator Enables Direct Measurements of p,γ and α,γ-Astrophysical Reactions at FRIB Notre Dame – MSU – LSU – Colorado School of Mines – ORNL – CMU- Ohio U collaboration

SECAR with Neutron Detection for (α,n) and (p,n) Reaction Measurements

i-Process: Need n-Capture and n-Source Rates

Challenge: rate of n-source reaction Ciani et al. 2021 (LUNA)

See also Febbraro et al. 2020 (Notre Dame)

FRIB Laboratory, Michigan State University U.S. Department of Energy Office of Science National Science Foundation

Challenge: n-capture rates on unstable nuclei

 β -Oslo Method: Level density and γ -strength from β -delayed γ -spectroscopy (S. Liddick, A. Spyrou NSCL)

Other possibilities:

- For long-lived targets: isotope harvesting
- Storage ring with neutron beam?

→ Close collaboration between RIB and stable beam facilities needed

FRIB Will Address Reactions in Explosive Stellar Burning

Open Questions:

- What are the abundances of long-lived γ-ray emitters in supernova ejecta?
- What would observations with γ-ray observatories (e.g. future COSI) tell us about supernova physics?

Reaction	Impact	Isotope Affected
${}^{42}K(n,\gamma){}^{43}K$	4.18	⁴³ K
$^{44}\text{Ti}(\alpha,p)^{47}\text{V}$	2.61, 1.31, 1.12 ^a	⁴⁴ Ti, ⁴⁸ V, ⁴⁹ V
43K(p,n)43Ca	2.51	⁴³ K
59 Cu(p, γ) 60 Zn	2.16	⁵⁹ Ni
42K(p,n)42Ca	2.13	⁴³ K
23 Na(α ,p) 26 Mg	2.12, 1.14, 1.13, 1.12 ^a	⁴³ K, ⁴⁷ Sc ⁴⁹ V, ⁵⁵ Fe
27 Al(α ,p) 30 Si	1.91, 1.58 ^a	⁴³ K, ⁴⁷ Sc
28 Al(p, α) 25 Mg	1.89, 1.37 <i>a</i>	⁴³ K, ⁴⁷ Sc

Reaction	Impact	Isotope Affected
47 Sc(n, γ) 48 Sc	1.88	⁴⁷ Sc
⁴⁷ Ti(n,p) ⁴⁷ Sc	1.85	⁴⁷ Sc
48 Cr(α ,p) ⁵¹ Mn	1.84, 1.16 ^a	⁴⁸ V, ⁵¹ Cr
51 Mn(p, γ) 52 Fe	1.76	⁵¹ Cr
41 K(p, α) ³⁸ Ar	1.72	⁴³ K
43 K(n, γ) 44 K	1.65	⁴³ K
46 Sc(n, γ) 47 Sc	1.55	⁴⁷ Sc
⁴⁶ Sc(p,n) ⁴⁶ Ti	1.45	⁴⁷ Sc
⁵³ Fe(n,p) ⁵³ Mn	1.41	⁵³ Mn
49 Mn(p, γ) ⁵⁰ Fe	1.34	⁴⁹ V
⁵⁵ Co(p,γ) ⁵⁶ Ni	1.32	⁵⁵ Fe
45 Ca(n, γ) 46 Ca	1.31	⁴⁷ Sc
$^{32}S(n,\alpha)^{29}Si$	1.31, 1.29 <i>a</i>	⁴³ K, ⁴⁷ Sc
40 Ar(p, γ) 41 K	1.30	⁴³ K

Key reactions for broad range of γ -ray emitters identified (Hermansen et al. 2020)

Broad range of reactions needed:

- Rare isotope beam experiments
 - Some beams sufficiently long-lived for batch mode production
- Stable beam experiments

→ Close collaboration between RIB and stable beam facilities needed

Accreting Neutron Stars are Unique Laboratories for Dense Matter

- X-rays from accreting neutron stars probe response of neutron star to accretion
- Complementary dense matter messenger to GW/EM signatures from NS mergers
- Opportunity with FRIB to pin down much of the nuclear physics
- New observations e.g. NICER, XRISM (launch date 2022) – key as not all data suitable for precision comparisons

Transition to Quantitative Analysis of Observations – Need Rare Isotope Nuclear Physics

Precision X-ray Burst Observations

- → Model template comparison to extract surface red shift
- → Constrains compactness of neutron star and equation of state

Models highly sensitive to Nuclear Physics

Recent progress on (α, p) reaction rates at NSCL

Indications from indirect experimental data on nuclear excitation levels that (α, p) rates are currently overpredicted by theory factors of 100 or more (e.g. Matic et al. 2011)

AT-TPC: ${}^{22}Mg(\alpha,p)$ JENSA + ORRUBA ³⁴Ar(α ,p) Browne, Schmidt, Chipps et al. @ NSCL JENSA Randhawa 2020 @ NSCL AT-TPC (a) Preliminary 100 10 σ (barns) σ (mb) Data (this work) Weighted Energy 34 Cl(α ,p) 37 Ar, TALYS Non-Smoker 34 Ar(α ,p) 37 K, TALYS Non-Smoker/8 Combined, TALYS 10^{-3} TALYS optimized Combined. This Work + 10 8 10 4.5 5 5.5 6 6.5 Energy_{CM} (MeV) E_{CM} (MeV)

 \rightarrow Agreement with HF predictions within x2

7

Factor of 100 overprediction by theory not confirmed •

 \rightarrow x8 lower than HF predictions

- Significant discrepancy with Hauser-Feshbach predictions in some cases
- More data needed, especially at lower energies, Gamow window for <1 GK not reached

Transiently Accreting Neutron Stars Provide Additional Observables that Depend on Rare Isotope Physics

During Quiescence: Cooling Observations Reveal Neutron Star Interior

Crust Becomes Pure Beyond Neutron Drip Depth Solves one Observational Puzzle

Critical Nuclei in Accreted Neutron Star Crusts Within FRIB Reach

- Mass Measurements (LEBIT, S800, HRS)
- Decay measurements (FDSi/FDS)

FRIB Laboratory, Michigan State University

National Science Foundation

U.S. Department of Energy Office of Science

 \rightarrow EC transition strengths

Beam duct

S800

Led by R. Zegers

Field cage

Summary

- Confluence of advances in nuclear science, astronomy, computational science that creates unique opportunities for progress in nuclear astrophysics towards a theory of nucleosynthesis
- In Nuclear Science a new generation of rare isotope facilities and capabilities will be critical for nuclear astrophysics
- The breadth of the nuclear science facility landscape with complementary facilities for rare isotope beams, stable beams, neutron beams, gammabeams is essential for nuclear astrophysics
 - Coordination and collaboration across all facilities is important
- Interdisciplinary coordination and collaboration with facilities and groups across nuclear science (experiment and theory), theoretical astrophysics, observational astronomy in its full breadth, gravitational wave physics, cosmochemistry is important
 - This requires special efforts to build the necessary scientific communities that do not necessarily interact with each other
 - The CeNAM collaboration and the IReNA network will be important to take full advantage of the extraordinary scientific opportunities in this area

