### THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

# **Targeted Alpha-Particle Therapies**

### Jonathan D. Burns

Department of Chemistry, University of Alabama at Birmingham

Nuclear Science Symposium International Union of Pure and Applied Physics (IUPAP), June 15, 2022, Washington, DC

## Outline

- Background on TAT
- <sup>225</sup>Ac
  - Background
  - Uses
  - Sources Material and Production
  - Separation and Purification
- <sup>211</sup>At
  - Background
  - Production
  - Separation and Purification
  - Uses
- Summary
- Acknowledgement



https://cen.acs.org/magazine/100/10013.html (accessed 4/25/22)

### **Basic Concept of Targeted Radionuclide Therapy**



Adapted from De Kruijff, R.M.; et al., Pharmaceuticals 2015, 8, 321-336.



Department of Chemistry, College of Arts and Sciences

### **Types of Targeted Radionuclide Therapy**



Adapted from de Jong, M.; et al. Pharmaceutics 2019, 11, 560.

Adapted from Poty S.; et al. J Nucl Med. 2018;59(6):878-884.

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

Department of Chemistry, College of Arts and Sciences

© UAB. All Rights Reserved

### Xofigo<sup>®</sup> (<sup>223</sup>Ra dichloride)





Department of Chemistry, College of Arts and Sciences

### **Promising TAT Radionuclides**



Adapted from Elgqvist, J.; et al. Front. Oncol. 2014, 3, 324.

### <sup>225</sup>Ac Background



Adapted from Pozzi, O. R. et al. IAEA-TM-44815 https://inis.iaea.org/search/search.aspx?orig g=RN:45091405

103

Lr

102

No

100

Fm

99

Es

Cf

101

Md

https://www.acs.org/content/acs/en/education/whatischemistry/periodictable.html (accessed 4/19/22)

Am

Cm

89

Ac

91

Pa

T

Nn

Pu

Th

Bk

7

α: 4.2 μs

8.4 MeV

β: 3.3 h

0.6 MeV

### Clinical Use of <sup>225</sup>Ac or <sup>213</sup>Bi Daughter

| Cancer Type           | Radioconjugate                  | Patients |
|-----------------------|---------------------------------|----------|
| Leukemia              | <sup>213</sup> Bi-anti-CD33-mAb | 49       |
|                       | <sup>225</sup> Ac-anti-CD33-mAb | 76       |
| Lymphoma              | <sup>213</sup> Bi-anti-CD20-mAb | 12       |
| Melanoma              | <sup>213</sup> Bi-anti-MCSP-mAb | 54       |
| Bladder cancer        | <sup>213</sup> Bi-anti-EGFR-mAb | 12       |
| Glioma                | <sup>213</sup> Bi-Substance P   | 68       |
|                       | <sup>225</sup> Ac-Substance P   | 20       |
| Neuroendocrine tumors | <sup>213</sup> Bi-DOTATOC       | 25       |
|                       | <sup>225</sup> Ac-DOTATOC       | 39       |
| Prostate cancer       | <sup>225</sup> Ac-PSMA617       | >400     |

Morgenstern, A.; et al. Semin. Nucl. Med. 2020, 50 (2), 119-123.



### **Recent FDA Approval for PSMA Radiopharmaceuticals**



De Vincentis, G, et al. Ann. Oncol. 2019;30(11) 1728-1739

Kratochwil, C.; et al J Nucl Med **2016,** 57 (8), 1170-6

**PSMA-617** <sup>177</sup>Lu or <sup>225</sup>Ac





### **Gap in Knowledge of Ac Basic Properties**

ACS central science

ACS central science

### **Inorganic Chemistry**

pubs.acs.org/IC

Communication

11

#### Synthesis and Characterization of the Actinium Ag A

This is an open access article published under an ACS AuthorCh copying and redistribution of the article or any adaptations for

Maryline G. Ferrier,<sup>†</sup><sup>©</sup> Benjamin W. Stein,<sup>†</sup> Enrique R. Batista,<sup>\*,†</sup> John M. Be Jonathan W. Engle,<sup>†,‡</sup> Kevin D. John,<sup>†</sup> Stosh A. Kozimor,<sup>\*,†</sup> Juan S. Lezama I and Lindsay N. Redman<sup>†</sup>

<sup>†</sup>Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States <sup>‡</sup>University of Wisconsin, Madison, Wisconsin 53711, United States <sup>§</sup>Stanford University, Stanford, California 94305, United States

Supporting Information

**ABSTRACT:** Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, *in vivo* transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H<sub>2</sub>O)<sub>x</sub><sup>3+</sup>) is critical for current efforts to develop <sup>225</sup>Ac [ $t_{1/2} = 10.0(1)$  d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity, many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived <sup>227</sup>Ac [ $t_{1/2} = 21.772(3)$  y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the Act<sup>III</sup> cation with an Ac-O<sub>HDO</sub> distance of 2.63(1) Å. This experimentally determined

www.acs.org

distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that  $Ac^{uu}$  was coordinated by 9 water molecules with  $Ac-O_{H2O}$  distances ranging from 2.61 to 2.76 Å. The data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large  $Ac^{III}$  coordination numbers and long  $Ac-O_{H2O}$  bond distances.

Aohan Hu, Victoria Brown, Samantha N. MacMillan, Valery Radchenko, Hua Yang, Luke Wharton, Caterina F. Ramogida, and Justin J. Wilson\*

Chelating the Alpha Therapy Radionuclides <sup>225</sup>Ac<sup>3+</sup> and <sup>213</sup>Bi<sup>3+</sup> with 18-Membered Macrocyclic Ligands Macrodipa and Py-Macrodipa



### Introducing the Actinium Aquo Ion

Talking to Manu Prakash about Frugal Diagnostics Better Catalytic N<sub>2</sub>-to-NH<sub>3</sub> Conversion by Fe Nanotech for Wound Care



## <sup>225</sup>Ac at Oak Ridge National Laboratory

- ~130 mCi of <sup>229</sup>Th recovered from legacy <sup>233</sup>U material at ORNL
- ~1 Ci of <sup>225</sup>Ac can be produced every year
- Estimated ~8 Ci unrecovered <sup>229</sup>Th form <sup>233</sup>U stockpile at ORNL
  - 2019 Isotek Systems and TerraPower took over management of unrecovered <sup>229</sup>Th stock via a publicprivate partnership agreement with the US DOE



https://www.isotopes.gov/information/actinium-225 (accessed 4/19/22) https://www.world-nuclear-news.org/Articles/Partnership-to-produce-medical-isotope-from-legacy (accessed 4/25/22)



Boll, R. A. et al. Appl. Radiat. Isot. 2005, 62 (5), 667-679.

Department of Chemistry, College of Arts and Sciences

### **Tri-Lab Effort for <sup>225</sup>Ac Production**



https://www.isotopes.gov/accelerator-facilities, (accessed 4/20/22) https://www.ornl.gov/section/radioisotope-production (accessed on 4/20/22)

LABAMA AT BIRMINGHAM.

Department of Chemistry, College of Arts and Sciences

### Accelerator Production of <sup>225</sup>Ac at LANL and BNL



https://www.isotopes.gov/information/actinium-225 (accessed on 4/25/22



Mastren, T.; et al. Sci. Rep. 2017, 7 (1), 8216.

### <sup>225</sup>Ac Summary

- The recent success of the PSMA class of radiopharmaceuticals, including the FDA approval of the <sup>68</sup>Ga and <sup>177</sup>Lu in March of 2022, has led to a rapidly growing interest in <sup>225</sup>Ac.
- Barriers towards progress of <sup>225</sup>Ac TAT radiopharmaceuticals include
  - Limited supply
  - Lack in understanding of the fundamental properties of <sup>225</sup>Ac
- To help address these needs, the DOE IP has initiated the Tri-Lab Effort for accelerator-based <sup>225</sup>Ac production.



### <sup>211</sup>At Background

|                    |                    |                     |                      |                     | 18                 |
|--------------------|--------------------|---------------------|----------------------|---------------------|--------------------|
|                    |                    |                     |                      |                     | He                 |
| 13                 | 14                 | 15                  | 16                   | 17                  | Helium<br>4.003    |
| 5                  | 6                  | 7                   | 8                    | 9                   | 10                 |
| В                  | C                  | Ν                   | 0                    |                     | Ne                 |
| Boron<br>10.81     | Carbon<br>12.01    | Nitrogen<br>14.01   | Oxygen<br>16.00      | Fluorine<br>19.00   | Neon<br>20.18      |
| 13                 | 14                 | 15                  | 16                   | 17                  | 18                 |
| A                  | Si                 | Ρ                   | S                    | Cl                  | Ar                 |
| Aluminium<br>26.98 | Silicon<br>28.09   | Phosphorus<br>30.97 | Sulfur<br>32,06      | Chlorine<br>35.45   | Argon<br>39.95     |
| 31                 | 32                 | 33                  | 34                   | 35                  | 36                 |
| Ga                 | Ge                 | As                  | Se                   | Br                  | Kr                 |
| Gallium<br>69.72   | Germanium<br>72.64 | Arsenic<br>74.92    | Selenium<br>78.96    | Bromine<br>79.90    | Krypton<br>83.79   |
| 49                 | 50                 | 51                  | 52                   | 53                  | 54                 |
| In                 | Sn                 | Sb                  | Те                   |                     | Xe                 |
| Indium<br>114.8    | Tin<br>118.7       | Antimony<br>121.8   | Tellurium<br>127.6   | lodine<br>126.9     | Xenon<br>131.3     |
| 81                 | 82                 | 83                  | 84                   | 85                  | 86                 |
| TI                 | Pb                 | Bi                  | Po                   | At                  | Rn                 |
| Thallium<br>204.38 | Lead<br>207.2      | Bismuth<br>209.0    | Polonium<br>(209)    | Astatine<br>(210)   | Radon<br>(222)     |
| 113                | 114                | 115                 | 116                  | 117                 | 118                |
| Nh                 | FI                 | Mc                  | Lv                   | Ts                  | Og                 |
| Nihonium<br>(284)  | Flerovium<br>(289) | Moscovium<br>(288)  | Livermorium<br>(293) | Tennessine<br>(294) | Oganesson<br>(294) |

https://www.acs.org/content/acs/en/education/whatischemistry/periodictable.html (accessed 4/19/22)



Adapted from Zalutsky, M. and Pruszynski M. Curr. Radiopharm. 2008, 1, 177–196.

### **Gap in Knowledge of At Basic Properties**





#### ARTICLE

Received 21 Aug 2012 | Accepted 27 Mar 2013 | Published 14 May 2013

DOI: 10.1038/ncomms2819 OPEN

# Measurement of the first ionization potential of astatine by laser ionization spectroscopy

S. Rothe<sup>1,2</sup>, A.N. Andreyev<sup>3,4,5,6</sup>, S. Antalic<sup>7</sup>, A. Borschevsky<sup>8,9</sup>, L. Capponi<sup>4,5</sup>, T.E. Cocolios<sup>1</sup>, H. De Witte<sup>10</sup>, E. Eliav<sup>11</sup>, D.V. Fedorov<sup>12</sup>, V.N. Fedosseev<sup>1</sup>, D.A. Fink<sup>1,13</sup>, S. Fritzsche<sup>14,15,†</sup>, L. Ghys<sup>10,16</sup>, M. Huyse<sup>10</sup>, N. Imai<sup>1,17</sup>, U. Kaldor<sup>11</sup>, Yuri Kudryavtsev<sup>10</sup>, U. Köster<sup>18</sup>, J.F.W. Lane<sup>4,5</sup>, J. Lassen<sup>19</sup>, V. Liberati<sup>4,5</sup>, K.M. Lynch<sup>1,20</sup>, B.A. Marsh<sup>1</sup>, K. Nishio<sup>6</sup>, D. Pauwels<sup>16</sup>, V. Pershina<sup>14</sup>, L. Popescu<sup>16</sup>, T.J. Procter<sup>20</sup>, D. Radulov<sup>10</sup>, S. Raeder<sup>2,19</sup>, M.M. Rajabali<sup>10</sup>, E. Rapisarda<sup>10</sup>, R.E. Rossel<sup>2</sup>, K. Sandhu<sup>4,5</sup>, M.D. Seliverstov<sup>1,4,5,12,10</sup>, A.M. Sjödin<sup>1</sup>, P. Van den Bergh<sup>10</sup>, P. Van Duppen<sup>10</sup>, M. Venhart<sup>21</sup>, Y. Wakabayashi<sup>6</sup> & K.D.A. Wendt<sup>2</sup>

$$At_{(g)} \rightarrow At_{(g)}^{+} + e^{-}$$
 9.31751(8) eV

### Published on May 14, 2013!

#### ARTICLE

#### https://doi.org/10.1038/s41467-020-17599-2 OPEN

### The electron affinity of astatine

David Leimbach <sup>1,2,3⊠</sup>, Julia Karls <sup>2</sup>, Yangyang Guo<sup>4</sup>, Rizwan Ahmed <sup>5</sup>, Jochen Ballof <sup>1,6</sup>, Lars Bengtsson<sup>2</sup>, Ferran Boix Pamies<sup>1</sup>, Anastasia Borschevsky<sup>4</sup>, Katerina Chrysalidis<sup>1,3</sup>, Ephraim Eliav<sup>7</sup>, Dmitry Fedorov<sup>8</sup>, Valentin Fedosseev <sup>1</sup>, Oliver Forstner <sup>9,10</sup>, Nicolas Galland <sup>11</sup>, Ronald Fernando Garcia Ruiz <sup>1,12</sup>, Camilo Granados<sup>1</sup>, Reinhard Heinke <sup>3</sup>, Karl Johnston <sup>1</sup>, Agota Koszorus<sup>13</sup>, Ulli Köster<sup>14</sup>, Moa K. Kristiansson <sup>15</sup>, Yuan Liu<sup>16</sup>, Bruce Marsh <sup>1</sup>, Pavel Molkanov<sup>8</sup>, Lukáš F. Pašteka <sup>17</sup>, João Pedro Ramos <sup>20</sup>, Eric Renault <sup>11</sup>, Mikael Reponen<sup>18</sup>, Annie Ringvall-Moberg<sup>1,2</sup>, Ralf Erik Rossel<sup>1</sup>, Dominik Studer <sup>3</sup>, Adam Vernon <sup>19</sup>, Jessica Warbinek<sup>2,3</sup>, Jakob Welander<sup>2</sup>, Klaus Wendt<sup>3</sup>, Shane Wilkins <sup>1</sup>, Dag Hanstorp <sup>2</sup> & Sebastian Rothe <sup>1</sup>

$$At_{(g)} + e^- \rightarrow At_{(g)}^-$$
 2.41578(7) eV

Published on July 30, 2020!

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

Department of Chemistry, College of Arts and Sciences

17

Check for updat

### <sup>211</sup>At Production Sites in US





Department of Chemistry, College of Arts and Sciences

### <sup>211</sup>At Production at Texas A&M

$$^{209}$$
Bi +  $\alpha \rightarrow ^{211}$ At + 2n

- K150 Cyclotron
- Energy: 28.8 MeV
- Ια<sub>Avg</sub>: 2–12.5 pμA
- Length: 8–18 h
- Yield: 8–100 mCi



### <sup>211</sup>At Chemistry at Texas A&M





### <sup>211</sup>At Separations: Solvent Extraction



Burns, J. D. et al. Chem. Commun. 2020, 56 (63), 9004.

Burns, J. D. et al. 2021 Rapid At-211 Purification Method, US Patent Application PCT/US21/25156, filled March 2021. Patent Pending.

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

### Extraction of <sup>211</sup>At: ketone vs alcohol

- 1-octanol extraction
  - Peaks 2–3 M HNO<sub>3</sub>
- 3-octanone extraction
  - Dependance on [NO<sub>3</sub><sup>-</sup>]
  - Stoichiometry At:NO<sub>3</sub><sup>-</sup>  $\rightarrow$  1:1



Burns, J. D. et al. Inorg. Chem. in revision



## <sup>211</sup>At Chemistry in HNO<sub>3</sub>

Inorganica Chimica Acta 362 (2009) 2654-2661



Determination of stability constants between complexing agents and At(I) and At(III) species present at ultra-trace concentrations

J. Champion<sup>a</sup>, C. Alliot<sup>b</sup>, S. Huclier<sup>a</sup>, D. Deniaud<sup>c</sup>, Z. Asfari<sup>d</sup>, G. Montavon<sup>a,\*</sup>



Champion, J. et al. Inorganica Chim. Acta 2009, 362 (8), 2654-2661.



Severo Pereira Gomes, A. et al. Phys.Chem.Chem.Phys. 2014, 16, 9238-9248.



## **O Lone Pair Interaction with AtO**<sup>+</sup> $\pi^*$



 $\Delta G = -47.2 \text{ kcal/mol}$ 

Burns, J. D. et al. Chem. Commun. 2020, 56 (63), 9004.



 $\Delta G = -42.6 \text{ kcal/mol}$ 

Department of Chemistry, College of Arts and Sciences





THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

## <sup>211</sup>At Extraction Speciation Cont.



| Solvent              | Mode        | ΔG(sol) /<br>kcal∙mol <sup>-1</sup> | E <sub>d</sub> /<br>kcal∙mol⁻¹ |
|----------------------|-------------|-------------------------------------|--------------------------------|
| 3-octanone           | Mono        | -11.91                              | 4.21                           |
| acetophenone         | Mono        | -13.56                              | 1.00                           |
| dibenzoylmethane     | Mono        | -12.06                              | 3.23                           |
| 1,3-dibenzoylpropane | Mono        | -15.58                              | 0.71                           |
|                      | Bi O O      | -11.27                              | 4.29                           |
|                      | Bi O phenyl | -14.32                              | 7.99                           |
| 1,4-dibenzoylbutane  | Mono        | -11.58                              | 3.20                           |
|                      | Bi O O      | -19.04                              | 4.52                           |
|                      | Bi O phenyl | -17.86                              | 4.39                           |

Burns, J. D. et al. Inorg. Chem. in review.



### **Extraction Chromatography**

Column containing porous support Amberchrom<sup>®</sup> CG300 3-octanone Support: styrene-divinylbenzene FDA UNII: 79173B4107 Particle Size: 50–100 µm Pore Size: 0.7 mL/g pore volume fdasis.nlm.nih.gov/srs/unii/79173b4107 300 Å mean pore size Surface Area: 700 m<sup>2</sup>/g

### **Characterization of Impregnated Resin**



Amberchrom<sup>®</sup> CG300 Support: styrene-divinylbenzene Particle Size: 50–100 μm Pore Size: 0.7 mL/g pore volume 300 Å mean pore size Surface Area: 700 m<sup>2</sup>/g J. D. Burns *et al., Sep. Purif. Technol.* **2021**, *256*, 117794 .



### **At-211 Separation: Extraction Chromatography**

Oct=O on Amberchrom® CG300 Bed Volume = 0.5 mL Bed Height = 12.99 mm ID = 7 mm9.8 mCi <sup>211</sup>At 1.7 M Bi<sup>3+</sup>



Contrifu

## **Cartridge Column Loading**

- 3-octanone impregnated on Amberchrom<sup>®</sup> CG300
- ID = 7 mm
- Bed Volume = 0.5 mL
- Bed Height = 12.99 mm
- ~60 mCi <sup>211</sup>At

THE UNIVERSITY OF

- ~0.5 M Bi<sup>3+</sup>
- <20 min to recover <sup>211</sup>At

Free liquid removed from cartridge and held for 3.5 & 34 h between Wash and Strip



Volume, mL

Tereshatov, E. E.; et al. Chem. Eng. J. 2022, 442, 136176.





### **Summary**

- Targeted Radionuclide Therapy, specifically Targeted Alpha Therapy, is a very promising emerging approach to cancer treatment.
- Next to <sup>223</sup>Ra, <sup>225</sup>Ac and <sup>211</sup>At are two of the most promising TAT radionuclides.
- The main challenges for both are:
  - Limited supply
  - Limited understanding of chemical properties.

## Acknowledgements <sup>211</sup>At

- Texas A&M Cyclotron Institute Staff
- Radiological Safety Program Staff
- DOE Isotope Program DE-SC0020958
- DOE DE-FG02-93ER40773
- NNSA DE-NA0003841
- Los Alamos National Laboratory
- TAMU: Bright Chair, T3 Grant, NLO







**CALABAMA AT BIRMINGHAM.** 

# Thank you!

# **Questions?**

# burnsjon@uab.edu