Colored and Colorless Correlations in Hadrons

Takashi Nakano

Research Center for Nuclear Physics, Osaka University

IUPAP Nuclear Science Symposium @ SURA, June 14-15, 2022

What are effective degrees of freedom ?

 $|B = 1 > = a_0 |3q > + a_1|(qq)(qq)\overline{q} > + a_2 |MB > + \cdots$

• How can we learn about the structure of the hadrons from their production and decay?

Pentaquark

The antiquark has a different flavor than the other 4 quarks.

D. Diakonov, V. Petrov, and M. Polyakov, Z. Phys. A 359 (1997) 305.

- Exotic: S=+1
- Low mass: 1530 MeV
- Narrow width: ~ 15 MeV
- J^p=1/2⁺

M = [1890-180*Y] MeV

Baryon masses in constituent quark model

$m_u \sim m_d = 300 \sim 350 \text{ MeV}, m_s = m_{u(d)} + 130 \sim 180 \text{ MeV}$

- Mainly 3 quark baryons:
 M ~ 3Mq + (strangeness)+(symmetry)
- π, K, and η are light: Nambu-Goldstone bosons of spontaneously broken chiral symmetry.
- 5-quark baryons, naively:
 M ~ 5Mq + (strangeness) +(symmetry)

1700~1900 MeV for Θ^+

Fall-apart decay problem

•DPP predicted the Θ^+ with M=1530MeV, Γ <15MeV, and J^p=1/2⁺.

•Naïve QM (and many Lattice calc.) gives M=1700~1900MeV with J^p=1/2⁻.

•But the negative parity state must have very wide width (~1 GeV) due to "fall apart" decay.

A di-quark model for pentaquarks

$$\left[ud
ight] \left[ud
ight] \overline{S} ~$$
 JW hep-ph/0307341 JM hep-ph/0308286

L=1, one unit of orbital angular momentum needed to get $J^P=1/2^+$

Uncorrelated quarks: $J^P = 1/2^-$

Decay Width:
$$\langle [ud][ud]\bar{s} \mid [uud][u\bar{s}] \rangle = \frac{1}{2\sqrt{6}} \Gamma \approx \frac{200 \, MeV}{(2\sqrt{6})^2} \approx 8 \, MeV$$

Pentaquark Θ^+ search in photo-production

Time dependent experimental status of Θ^+

γ+d(n) reactions	\bigcirc	LEPS	S-C		\bigcirc	CLA	S-d1				\bigcirc	LEP	S-d		LEI	PS-d	2	CL	AS-d	2
γ + $p \rightarrow p K_s^0$						\bigcirc	SAP	HIR									CLA	5 g1:	1	
γ + p → n K⁺ K⁻ p⁺				_				\bigcirc	CLAS	-р								BEI	LE	
$K + (N) \rightarrow p K_s^0$					IANA	۱ ۱			z	EUS	νBC								BaBa	ar 🤇
lepton + D, $A \rightarrow p K_s^0$							iern c			\sim		SPH	INX	Llung						
$p + A \rightarrow pK_s^0 + X$								VUZ	\bigcirc	Õ	Á			пуре	ICP		5	VDZ	\bigcirc	
$p + p \rightarrow pK_s^0 + \Sigma^+$									\bigcirc	COSI	(-TOF	HE	RA-B							
Other ⊕• Upper Limits							BES	J, Ψ		C	DF 🧲				=0Cl	JS	N	/A89		
	2002	2	2003				2004					2005								

- : Positive result
- : Negative result

Null results for Pentaquarks in High energy experiments

Assuming the Pentaquark production is the same as baryon production we expect the total production of Θ_s^+ , $\Xi_5^$ per event continuum to be $\Theta_s^+ = 7 \ge 10^{-4}$, $\Xi_5^- = 3 \ge 10^{-5}$

"XYZ" sensations at Belle

Explicitly Exotic Hadrons

These hadrons require *new components* beyond the minimum constituent quarks, *ex.* colorless meson \overline{qq} or colored diquark qq.

Variety of recorded reactions

Spin-Parity of X(3872)

J^{PC}=1⁺⁺ (Belle, BaBar, CDF, LHCb) from J/ $\psi \pi^+\pi^-$ angular distribution. (PRL110, 222001(2013) and cited papers)

Br(X(3872) \rightarrow D⁰ \overline{D}^{*0}) is about Br(X(3872) \rightarrow J/ $\psi \pi^{+}\pi^{-}$) × 10.

Admixture : Plausible interpretation for X(3872)

DD* component is coupled with the same $J^{PC} c\overline{c}$, $\chi_{c1}(2P)$ (unseen). \rightarrow can explain Br(X \rightarrow D⁰D^{*0})/Br(X \rightarrow J/ $\psi \pi^{+}\pi^{-}$) is about 10.

 \rightarrow pure molecule; too fragile to have prompt produced in Tevatron/LHC. \rightarrow another $\chi_{c1}(2P)$ dominant state would become broad.

A Puzzle in Baryon Spectroscopy

 $\Lambda(1405)~(1/2-)$ is the lowest negative parity baryon, even below N*.

2 competing pictures:

1. *P*-wave excitation uds with S=1/2, L=1 orbital excitation $\Rightarrow J^{\pi}=1/2^{-}$ and $3/2^{-}$

2. Additional qq^{bar} pair qqq(qq^{bar}) L= 0 state (NO orbital excitation) S=1/2, L=0 => Jπ=1/2likely to be N(1/2+) + K^{bar}(0-) bound state

Similar competition in

X(3872) (1⁺) ~ cc^{bar} (³P₁)+ DD*bar(S-wave)

Heavy Quark Dynamics

Dynamics of heavy quarks (c, b) is perturbative and nonrelativistic. It decouples from light quarks.

⇒ *Heavy quark symmetry* : Light quarks do not feel the mass and spin of the heavy quark (in the limit $m_Q \rightarrow \infty$).

17

Diquarks in Heavy Baryons

Diquarks in Excited Heavy Baryons

P-wave excited states of heavy baryons, Λ_Q , Σ_Q ,...Two distinctive modes: λ and ρ modes

 $E (\lambda$ -mode) < $E (\rho$ -mode) generally in the quark model

> Scaler diquark "good diquark"

Axial vector diquark "bad diquark"

IUPAP Nuclear Science Symposium, June 14, 2022

Diquark in Lattice QCD

M(1⁺) - M(0⁺) for Lattice QCD Alexandrou, de Forcrand, Lucini, PRL 97 (2006) 222002 Quench QCD, from gauge-invariant Qqq system M(1⁺) - M(0⁺) ~ 200-220 MeV

Babich, et al., PR D76 (2007) 074021 Quench QCD, Landau gauge M(1⁺) - M(0⁺) ~162 MeV

Y. Bi, et al., Chinese Physics C40 (2016)
 Full QCD, Landau gauge
 M(1⁺) - M(0⁺) ~290 MeV

Hyperon Production

Production cross sections of hyperons and charmed baryons from e^+e^- annihilation near $\sqrt{s} = 10.52$ GeV

Belle Collaboration, Phys. Rev. D97, 072005 (2018)

- Λ's and Σ's are on a line with possible suppression of Σ(1385)⁺
- Spin-spin interaction may compete with diquark correlation
- Measurement of Λ(1405) will be interesting

Diquarks in Strange and Charm

In the strange sector, the spin-spin force splits SU(3) 8 and 10.

In the heavier sectors, the heavy-quark spin symmetry suppresses $\Sigma_Q(1/2)$ - $\Sigma_Q(3/2)$ splitting.

Diquark structure appear clearly in charm and bottom

Diquark masses and chiral symmetry

Mass changes of the 0⁺ and 1⁺ diquarks under chiral restoration

Chiral condensate in units of its broken vacuum value

Possible inversion of the scalar and axial-vector diquarks \rightarrow may be significant for the behaviors of heavy baryons and diquark condensates in dense matter. 24

Doubly Heavy Tetraquarks

#The same model is applied to DHTQ

Y. Kim, M. Oka, K. Suzuki, Phys. Rev. D 105, 074021 (2022) Potential between a heavy quark and a diquark

$$V_{0}(r) = -\frac{\alpha}{r} + \lambda r + C$$

$$V_{ss}(r) = (\mathbf{s}_{i} \cdot \mathbf{s}_{j}) \frac{\kappa}{M_{i}M_{j}} \frac{\Lambda^{2}}{r} \exp(-\Lambda r)$$

$$Q$$

$$Potential between heavy quarks (a la Semay-Silvestra Brac)$$

$$V(r) = -\frac{\alpha}{r} + \lambda r^{p} + C + (\mathbf{s}_{i} \cdot \mathbf{s}_{j}) \frac{8\kappa}{3m_{i}m_{j}\sqrt{\pi}} \frac{e^{-r^{2}/r_{0}^{2}}}{r_{0}^{3}}$$

$$Q$$

Predictions

茸

 $M(T_{bb})=10489 \text{ MeV}$ below BB^* threshold $M(T_{cc})=3961 \text{ MeV}$ above DD^* threshold

Observation of T_{cc}

T_{cc} LHCb

arXiv:2109.01038, 2109.01056

- Very close to $D^{*+}D^0$ threshold
- Likely to be D^*D^0 molecule
- May require 4q core for the production at LHCb

Measurment of charmed baryons (Y_{c}^{*+}) formations and decays

Missing Mass Meas. @J-PARC E50 Experiment

- Inclusive/systematic measurement of Y_c^{*+}
- Decay branching ratios (independent meas. of decay particles)

Expected spectrum

Requires high resolution and good PID at very high rate

E50 Spectrometer

Streaming DAQ system

- Nano-beam
- Increase currents

Peak luminosity : 2.1x10³⁴ cm⁻²s⁻¹ => 8.0x10³⁵ cm⁻²s⁻¹ Beam energy : 3.5 / 8.0 GeV => 4.0 / 7.0 GeV

Boost factor ~2/3

Belle II detector

LEPS2 Beamline

Solenoid spectrometer

- Timing counter: SC, Forward and Barrel RPCs
- Tracker: TPC, DCs
- EM calorimeter: Barrel γ
- Aerogel Cerenkov counters

Solenoid spectrometer

Summary

- Hadron spectroscopy including exotic hadrons is shedding lights on "effective" degrees of freedom for hadron structure and excitation, *ex. molecular states, diquarks, collective motions.*
- Production and decay of heavy hadrons is promising to reveal the dynamics and roles of diquarks.
- High-intensity and wide-acceptance facilities such as J-PARC (with Hadron Hall Extension in near future), Belle II@Super KEKB, and LEPS2@SPring-8 will provide us with opportunities to explore the colored and colorless correlations further.

Acknowledgement

I thank Atsushi Hosaka, Yoichi Ikeda, Kenkichi Miyabayashi, Masayuki Niiyama, Hiroyuki Noumi, Makoto Oka, Kenji Sasaki, and Kiyoshi Tanida for sharing knowledge and ideas.