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INTRODUCTION

| am a theorist, working
primarily on physics beyond
the standard model and dark
matter. Recently | have also
become the co-spokesperson
of an experiment, FASER at
the LHC.

The title of this talk is inspired
(as | understand it!) by a short

article in Symmetry Magazine.

The article interviewed a
number of people about
current anomalies and their
possible relation to dark
matter.
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lllustration by Sandbox Studio, Chicago

Curious physics results could
shed light on dark matter

09/07/21 | By Madeleine O'Keefe

Even experiments that aren't looking for dark matter directly
could give us hints about the mysterious substance that
permeates our universe.
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OUTLINE

A SNAPSHOT OF PARTICLE PHYSICS NOW

CURIOUS RESULTS

Muon g-2
8Be and “He ATOMKI Anomalies
Strongly-Interacting DM

FASER AT THE LHC

FORWARD PHYSICS FACILITY

Summary: There has been a sea change in thinking about searches for new
particles, with increasing focus on MeV to GeV energies, leading to new
synergies between particle physics, cosmology, and nuclear physics.
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A SNAPSHOT OF
PARTICLE PHYSICS NOW
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THE STANDARD MODEL

* This is a critical time in particle physics
— the Higgs boson was discovered in 2012, completing the SM particle content

— but many fascinating problems remain: dark matter, neutrino masses, dark
energy, matter—anti-matter asymmetry, strong CP problem, grand unification,
gauge and flavor hierarchy problems, ...

74% Dark Energy

¢ QUARKS @ LEPTONS @ BOSONS @ HIGGS BOSON
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CURRENT STATUS OF THE LHC

» At the energy frontier, following the Higgs boson discovery at the LHC, we

have not discovered any other evidence of new particles.

« The LHC has just emerged
from Long Shutdown 2. Run

3 started in April 2022 and is
ramping up to full power in

July 2022.

e Much more to come:
[Run 1/2, 2010-18, 200 tb-]
Run 3, 2022-25, 150 fb-?

Luminosity [cm™2s'1]

HL-LHC, 2029-40, 3000 fb-"

 What can we do to enhance
the prospects for discovering
new physics?

15 June 2022

LHC Schedule (shift everything over 1 year for COVID)
¢ Peak luminosity ~ ==Integrated luminosity
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DARK MATTER

« DM is among the most obvious hints for new particles. In principle, the
dark matter mass can be almost anything.

 However, there is a simple
mechanism for generating dark
matter: thermal relic freezeout.

* In the early universe, dark matter ..

pair annihilates until it becomes
too dilute and then “freezes out.”

 The final abundance is
determined by the annihilation
rate: the weaker the interaction,
the more DM there is now.
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By dimensional analysis, (cv) ~ my?, so the relic density is larger for
heavy particles with weak interactions.
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The coincidence of
cosmology and
particle physics in
the upper right
corner is known as
the WIMP Miracle.
This has guided the
field for decades.

Feng (2001)
But there is an
entire diagonal to

explore: the
WIMPIless Miracle.

Feng, Kumar (2008)
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AN EXAMPLE: DARK PHOTONS

« Suppose there is a dark sector that contains dark matter X and also a dark force:
dark electromagnetism.

» The force carriers of our sector and the dark sector will mix
— perhaps suppressed, but completely generic, since a renormalizable operator

 The result? A new particle, the dark photon A': like a normal photon, but with an
unknown mass m  and couplings suppressed by ¢. It travels through matter
without interacting, but eventually decays through A" - e™ e, ...

Holdom (1986)

* Many other possibilities: B — L, L, — L, and other light gauge bosons, dark Higgs
bosons X —» K* K~ , axion-like particles a — yy, sterile neutrinos N - [* [ v,
millicharged particles, ..., aka long-lived particles (LLPs), feebly-interacting
particles (FIPs), dark sector particles, portal particles, ...

15 June 2022 Feng 10
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Dark Sector Candidates, Anomalies, and Search Techniques
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THE MUON’S ANOMALOUS MAGNETIC MOMENT

« The anomalous magnetic moment has a =g 13 a = (g1 —2)/2
distinguished history. Schwinger’s =95, L= a
calculation of a, helped establish QED.

« In 2021, the Muon g-2 Collaboration
announced a high precision
measurement that deviates from the
SM prediction by 3.3c.

* ltis sensitive to the weak interactions,
but unlike other precision probes, it
requires neither flavor nor CP
violation, and so is a robust probe of BNLG2 —— o
new particles that couple to muons.
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THE MUON’S ANOMALOUS MAGNETIC MOMENT

« The discrepancy can be resolved by either heavy or light new particles.

« Supersymmetry with superpartners <+ Particles with MeV-GeV masses and
below the TeV scale. couplings ~ 1073, (Dark photon now
excluded, but other similar particles

Y remain viable.)
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THE 8Be and “He ATOMKI ANOMALIES

* New particles at the ~ 10 MeV scale and below can
be produced in the decays of excited nuclei.

* In 2015, an ATOMKI group reported a 7c excess in
8Be (18.15) —» 8Be e"e™ decays at 0,+,- = 140°.
Krasznahorkay et al., PRL, 1504.01527 [nucl-ex]

Treiman, Wilczek (1978); Donnelly, Freedman, Lytel, Peccei,
Schwartz (1978); Savage, McKeown, Filippone, Mitchell (1986)
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"Li(p,e*e)’Be

1
40 60
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THE 8Be and “He ATOMKI ANOMALIES

« The anomaly in the decays of excited 8Be nuclei can be explained
by a new protophobic gauge boson X with mass 17 MeV and
couplings ~ 10™*to 1073: 8Be (18.15) — 8Be X, followed by X

—ete.

Feng, Fornal, Galon, Gardner, Smolinsky, Tanedo, Tait (2016)

* In 2019 the ATOMKI group
reported a new 7c excess in the
decays of excited “He (20.49)
nuclei at 8,+,- = 115°.

Krasznahorkay et al. (2019)

« Remarkably, this anomaly can be
explained by the same new
particle, which can also reduce
the muon g-2 discrepancy to 2c.

Feng, Tait, Verhaaren (2020)
See also Zhang, Miller (2020)

15 June 2022
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SELF-INTERACTING DARK MATTER

strongly self-interacting.

There are indications from small-scale structure that dark matter may be

For example, there appear to be halo profiles that are not as cuspy (high central

density) as predicted for standard collisionless cold dark matter (WIMPs, axions,

sterile neutrinos, ...).

To smooth out the cusps, need a
self-interaction cross section

o cm? Dbarn

Y o _~ _~ -3
e Gey ~ (100 MeV)
DM DM
Al
DM DM

This can be explained by a dark
sector mass scale of ~ 10-100 MeV

(“dark neutrons interacting through
dark pions”).

15 June 2022
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Rocha et al. (2012); Peter et al. (2012)
Vogelsberger et al. (2012); Zavala et al. (2012)
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NEW SEARCHES FOR LIGHT PARTICLES

« BSM physics has been re-invigorated by new ideas to search for Long-
Lived Particles (LLPs), Feebly-Interacting Particles (FIPs), portal particles,

dark sectors,
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LIGHT PARTICLES AT THE LHC

proton - (anti)proton cross sections
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» Most searches have focused on

processes with ¢ ~ fb, pb.

* But 0¢ot ~100 mb, currently
wasted in new physics searches.
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What do these events look like?

Consider pions.

(2102) Msmouelol] ‘Buily ‘uojes ‘Bus

Enormous event rates. Typical pt ~
250 MeV, but many with p ~ TeV within

1 mrad (n > 7.6) of the beamline.
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SEARCHES FOR NEW LIGHT PARTICLES

« Atthe LHC, the existing large detectors were designed to find strongly-
interacting heavy particles.

SUSY, top, Higgs, ...

« Unfortunately, they are also almost perfectly designed to not find weakly-
interacting light particles. These are dominantly produced in the rare
decays of light particles (w, n, K, D, B, ...) along the forward direction, and
so the new particles escape through the blind spots down the beamline.

* There are both SM and BSM motivations to explore the “wasted” o, ~ 100
mb and cover these blind spots in the far forward region.

15 June 2022 Feng 21



THE BASIC IDEA

We cannot block the beams, but if we go far away,
the proton beams are bent by magnets, whereas
light, weakly-interacting particles go straight.

SPS

uI23 Point 1 PGCS
O|nt 1-8 A PM15 LSS4
RE PM18 px16 X1
PMI2 = PX14 T8
T
RE18 UJ18 US15
RR17 yj17 ULlé uUL14 uJi3
= Q ujiq RR13 RE12
RT18 2 \
\Jh_-
TI1S8 UI12
P UX15 TIA2
Feng, Galon, Kling, Trojanowski (2017) USA15 RT12

Kling, Trojanowski (2018)

Feng, Galon, Kling, Trojanowski (2018) ATLAS 1"
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THE FAR-FORWARD REGION

New particle A’ is produced at
ATLAS travels along the beam

rock, and finally decays in tunnel
TIM12, 480 m from ATLAS

TI12 near UJ12

15 June 2022 Feng 23



HOW BIG DOES THE DETECTOR HAVE TO BE?

e Momentum: — 250 MeV
S

1 TeV

« Space: 12 cm
480 m

|

Particles produced in pion decays have 0
~ 0.2 mrad (n ~ 9); cf. the moon (7 mrad).

Particles produced in &, n, K, D, B decay
are therefore far more collimated than
shown below, motivating new, small, fast,
and cheap experiments at the LHC.
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THE FASER DETECTOR

* Nothing incoming and 2 ~TeV, opposite-sign charged tracks pointing back
to the ATLAS IP: a “light shining through (100 m-thick) wall” experiment.

« Scintillators veto incoming charged tracks (muons), magnets split the
charged tracks, which are detected by tracking stations and a calorimeter.

Scintillators =

.
““

Calorimeter

Baseplates
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DARK PHOTON SENSITIVITY REACH
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 FASER probes new parameter space with just 1 fb-' starting in July 2022.

* In Run 3, will probe the MeV-GeV region favored by thermal relic

considerations, muon g-2 explanations, SIDM, ATOMKI anomalies, ...

« Even without a detector upgrade, the HL-LHC extends (Luminosity*Vol)

by factor of 3000 — could detect as many as 10,000 dark photons.
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TARGETS IN DARK PHOTON PARAMETER SPACE
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FASERv

* In addition to the possibility of hypothetical new light, weakly-interacting
particles, there are also known light, weakly-interacting particles: neutrinos.

« The high-energy ones, which interact most strongly, are overwhelmingly
produced in the far forward direction. Before May 2021, no candidate
collider neutrino had ever been detected.

» If they can be detected, there is a fascinating new world of LHC neutrinos
that can be explored.
— The neutrino energies are ~TeV, highest human-made energies ever.

— All flavors are produced (n - v,, K— v,, D - v.) and both neutrinos and anti-

neutrinos.
De Rujula, Ruckl (1984); Winter (1990); Vannucci (1993)
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FIRST COLLIDER NEUTRINO CANDIDATES

* In 2018 a FASER pilot emulsion detector
with 11 kg fiducial mass collected 12.2 tb""
on the beam collision axis (installed and
removed during Technical Stops).

* In May 2021, the FASER Collaboration
announced the direct detection of 6
candidate neutrinos above 12 expected
neutral hadron background events (2.7c).
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LOCATION, LOCATION, LOCATION

FASER Pilot Detector

Suitcase-size, 4 weeks
$0 (recycled parts)

6 candidate neutrinos

’

All previous
collider detectors

Building-size, decades

This opens up a new field: ~$10°

neutrino physics at colliders 0 candidate neutrinos
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FORWARD PHYSICS FACILITY

« FASER, FASERv, and SND@LHC are currently highly constrained by
1980’s (LEP!) infrastructure that was never intended to support
experiments.

* The rich physics program in the far-forward region therefore strongly
motivates creating a dedicated Forward Physics Facility to house far-
forward experiments for the HL-LHC era from 2029-2040.

 FPF Meetings
— FPF Kickoff Meeting, 9-10 Nov 2020, https://indico.cern.ch/event/955956
— FPF2 Meeting, 27-28 May 2021, https://indico.cern.ch/event/1022352
— FPF3 Meeting, 25-26 Oct 2021, https://indico.cern.ch/event/1076733
— FPF4 Meeting, 31 Jan-1 Feb 2022, https://indico.cern.ch/event/1110746

 FPF Short Paper: 75 pages, 80 authors completed in Sep 2021 (2109.10905,
Physics Reports 968, 1 (2022)).

 FPF Snowmass White Paper: Feng, Kling, Reno, Rojo, Soldin et al. A
comprehensive, 429-page, 392-author+endorser summary (2203.05090).
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THE LOCATION

« The CERN civil engineering team has considered many sites around
the LHC ring that are on the beam collision axis of an IP.

« A preferred location has been identified ~620-680 m west of the ATLAS
IP, shielded by ~200 m of rock. The site is on CERN land in France.
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CAVERN AND SHAFT

« Cavern: 65m long, 8m wide/high. Shaft: 88m-deep, 9.1m-diameter.

 The FPF is completely decoupled from the LHC: no need for a safety corridor
connecting the FPF to the LHC, preliminary RP and vibration studies indicate
that FPF construction will have no significant impact on LHC operation.
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SURFACE BUILDINGS

O <42
AN INE |

25t overhead crane

Kincso Balazs,
John Osborne,

CERN CE (2022)

15 June 2022 Feng 39



COST AND TIMELINE

* Very preliminary (class 4) cost estimate: 23 MCHF (CE) + 15 MCHF
(services) = 40 MCHF (+50%/-30%), not including experiments.

« Timeline presented at Chamonix workshop (Jamie Boyd, Feb 2022).
« Expect CDRs for FPF and its experiments in the coming 6-12 months.

« Begin CE works, installation of services in LS3, followed by installation
and commissioning of experiments in early Run 4. Physics begins in
Run 4 and continues to the end of the HL-LHC era.
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FPF EXPERIMENTS

« At present there are 5 experiments being developed for the FPF.
« Pseudo-rapidity coverage in the FPF is n > 5.5, with most experiments
on the LOS coveringn > 7.
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FPF PHYSICS

 The FPF is a general purpose facility with a broad SM and BSM physics
program that expands on the physics of FASER and FASERv. Here |
will just give a few examples. For more, see the FPF White Paper.
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NEUTRINOS

» At the FPF, three proposed ~10-ton detectors FASERv2, AdvSND, and
FLArE will each detect ~100,000 v,, ~1,000,000 v,,, and ~1000 v,
interactions at TeV energies, providing high statistics samples for all
three flavors in an energy range that has never been directly explored.

« Will enable precision studies of the tau neutrino.

« Can also distinguish neutrinos and anti-neutrinos for muon and tau.
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QCD

« The FPF will also support a rich program of QCD and hadron structure studies.

« Forward neutrino production is a a probe of forward hadron production, BFKL
dynamics, intrinsic charm, ultra small x proton structure, with important
implications for UHE cosmic ray experiments.

» Neutrino interactions will probe DIS at the TeV-scale, constrain proton and
nuclear structure, pdfs. Many synergies with the EIC.
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QCD

« The FPF will probe proton structure at ultra small x ~ 107 (and also
high x ~ 1).

* In addition to the intrinsic interest in QCD, ultra small-x physics will
become more and more important at higher energies, for example, in
making precise predictions for 6(gg — h) at a 100 TeV pp collider.
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SUMMARY

* The possibility that new particles may be light and very weakly-interacting
opens up new connections between particle physics, cosmology, and
nuclear physics.

« Atthe LHC, this has led to new interest in building experiments in the far
forward region to catch particles produced along the beamline.

« The Forward Physics Facility, proposed for the HL-LHC, will enhance the
LHC's potential for new physics searches, neutrinos physics, and QCD.
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