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Presentation overview

• Introduction to Idaho National Laboratory
• Energy systems status quo 
• New nuclear paradigm: A vision for the future

− Advanced reactor development
− New market opportunities beyond electricity

• Integrated energy systems
− Concept
− Design/analysis
− Opportunity for new markets

• Advancing nuclear and integrated energy systems through demonstration
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U.S. Department of Energy National Laboratories
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Addressing the world’s most challenging problems
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MISSION
Discover, demonstrate, and 

secure innovative nuclear energy 
solutions, clean energy options 

and critical infrastructure.

VISION
INL will change the world’s
energy future and secure
our critical infrastructure.
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Transforming the energy paradigm through 
innovation and demonstration
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A quick look at today’s energy 
systems…
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Energy systems today

• Individual generators contribute to meeting electric grid 
demand, managed by an independent grid operator

• Individual thermal energy resources typically support 
industrial demand

• Transportation mostly relies on fossil fuels 
(with growing, yet limited, electrification)
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Achieving net-zero emissions will require us to consider 
the role(s) of all clean energy generation options—
and we must look to non-emitting sources of heat in 
addition to electricity.
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A snapshot of the “traditional” electrical power sector

Flexible Nuclear Energy for Clean Energy Systems, September 2020, 
https://www.nice-future.org/flexible-nuclear-energy-clean-energy-systems.8
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https://www.nice-future.org/flexible-nuclear-energy-clean-energy-systems


But… the electrical power sector is shifting away from 
traditional baseload

Flexible Nuclear Energy for Clean Energy Systems, September 2020, 
https://www.nice-future.org/flexible-nuclear-energy-clean-energy-systems.9
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generation by 
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Documents & Filing –
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Electric Balancing Authority 
Area and Planning Area 
Report – Data Downloads”, 
n.d.
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The current role of nuclear energy in the U.S.

energy.gov/nuclear
10
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The current role of nuclear energy in the U.S.

energy.gov/nuclear
11
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Motivation and challenges
• Evolution in the electric power sector 

− Advent of variable renewables à increased variation in net load
− Transition away from traditional baseload resources
− Increased need for generator flexibility while ensuring grid resilience, reliability

• Ambitious goals for deep decarbonization (“net-zero”)
U.S. targets:

− Zero emissions from electricity sector by 2035
− Economy-wide net-zero emissions by 2050 à industry, transportation

• Traditional energy planning tools are often limited in applicability to new scenarios, 
technologies, opportunities

− Cross-sectoral energy utilization from a single generator not represented
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So, what’s new in nuclear 
technology, and when will it be 
ready for deployment?
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Microreactors and small 
modular reactors can be 
deployed to provide reliable 
energy where it is needed 
with a small footprint that 
allows for siting very near 
to the intended use.

Artist renditions courtesy of 
GAIN and Third Way, inspired 
by the Nuclear Energy 
Reimagined concept led by INL. 
Learn more about these and 
other energy park concepts at 
thirdway.org/blog/nuclear-
reimagined

Nuclear energy and deployment flexibility
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Advanced reactor 
design concepts

Key Benefits
• Enhanced inherent/passive safety
• Deployment flexibility 
• Versatile applications
• Long fuel cycles
• Reduced waste
• Advanced manufacturing and 

factory manufacturing to reduce 
costs
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60+ private sector projects 
under development



Small modular 
reactors

• Less site preparation
• More deployment options
• Flexible operation
• New business opportunities
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What are Microreactors?
• Small size and power level: <1 MW – 20 MW

• Factory build, easily transportable to and from site

• Minimum site preparation

• Flexible operation; self-regulating

• Designs enable remote and/or semi-autonomous operation

• High-degree of passive safety

• Operational lifetime: 5 – 20 yrs

• Technologies evolving from advances in materials, space 
reactor technologies, advanced nuclear fuels, and modeling 
& simulation

• Well suited for remote areas and applications:
− Remote communities
− Isolated microgrids
− Mining sites
− DOD applications

• Broadly distributed, reliable, energy sources
Microreactors are integrated systems that can be 

based on a range of reactor technologies
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High temperature gas reactor: General characteristics
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• Moderator: Graphite 
− Solid at high temperatures 
− High moderating ratio, heat 

capacity, thermal inertia
• Coolant: Helium

− Inert (chemical & neutron) and 
single phase

• Fuel: Tri-structural Isotropic (TRISO) 
− Structural coatings act as safety 

layers
− Transport of fission products out of 

fuel very limited up to 1,800oC 
during loss of cooling transient

Information courtesy G. Strydom, HTGR National Technical DirectorExample: X-energy Xe-100



Liquid Metal Fast Reactor
• Liquid metals as a primary coolant, allow higher power density
• Leading coolants considered in the U.S. include sodium, lead

− Sodium: Chemically reactive w/water, air; SS compatible
− Lead: Non-reactive w/water, air; corrosive
− Coolant temperature ~550oC 
− Operate near atmospheric pressure

• Typically intended for a closed fuel cycle
− Metal fuel, although oxides also possible

• Fast neutron spectrum (no moderator)
• Power conversion: Rankine/steam cycle or sCO2 Brayton
• Allows for natural circulation and passive safety 

• Many designs use electromagnetic or mechanical pumps
• Significant global experience; U.S. experience includes EBR-II 

(pool-type), Fermi-I (loop), and FFTF (loop)
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Gen-IV International 
Forum, Sodium Fast 
Reactor concept
Top: Pool-type
Right: Loop-type

Example: TerraPower/GE Natrium, Westinghouse LFR



Molten Salt Reactors
Molten salt fueled
• Nuclear fuel dissolved in a liquid salt, 

circulated through system
− U or Th fuel cycle
− Fluoride or chloride salt

• Heat produced directly in the heat 
transfer fluid

• Chemical separation of fission 
products on-line

• Possibility for on-line reprocessing

General characteristics
• Molten salts have high heat capacity
• Allow for low pressure operation
• Large margin to boiling
• High operating temperature: ~700oC

Molten salt cooled
• Fluoride or chloride salt coolant
• Solid fuel, typically TRISO
• Low-pressure
• Steam cycle
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Example: TerraPower MCFR (liquid fuel), Kairos Hermes (solid fuel) 



US DOE Advanced Reactor Demonstration Program (ARDP)

• Established in fiscal year (FY) 2020 budget language ($230 million (M)); 
overall FY21 budget for ARDP activities $250 M

• Focuses DOE and non-federal resources on actual construction of 
demonstration reactors

• Establishes ambitious timeframe for demonstration reactors – five to seven years 
from award, including design, licensing, construction and start of operations

• Program also addresses technical risks for less mature designs
• Desired outcomes:

− Support diversity of advanced designs that offer significant improvements to 
current generation of operational reactors

− Enable a market environment for commercial products that are safe and 
affordable to both construct and operate in the near-and mid-term

− Stimulate commercial enterprises, including supply chains

22



ARDP demonstrations
• TerraPowerLLC – Natrium Reactor

− Sodium-cooled fast reactor that leverages of decades of development, including fuel
− High temperature reactor coupled with thermal energy storage for flexible electricity 

output
− New metal fuel fabrication facility
− Site: Kemmerer, Wyoming (retiring coal plant site)
− https://natriumpower.com/

• X-energy – Xe-100 reactor
− High temperature gas-cooled reactor that leverages decades of development and 

robust fuel form
− Provides flexible electricity output and process heat for a wide range of industrial heat 

applications
− Commercial scale TRISO fuel fabrication facility
− Site: Washington state, near Hanford
− https://x-energy.com/
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Accelerating advanced reactor demonstration & deployment
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Thinking outside the box: 
Clean nuclear energy for non-grid 
applications
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2018 energy sources and consumers, U.S.
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Forsberg and Bragg-Sitton, Maximizing Clean Energy Use: Integrating Nuclear and 
Renewable Technologies to Support Variable Electricity, Heat and Hydrogen Demand, 
The Bridge, National Academy of Engineering, 50(3), p. 24-31, 2020. Available at 
https://www.nae.edu/239120/Fall-Issue-of-The-Bridge-on-Nuclear-Energy-Revisited.

Decarbonizing 
electricity is 
only part of 
the challenge
Electricity 
accounts for only 
17% of total 
energy use in the 
U.S. across all 
“Energy use 
sectors,” with the 
remaining 83% 
used in the form of 
heat. 

Adapted from LLNL (2020), 
https://flowcharts.llnl.gov/

https://www.nae.edu/239120/Fall-Issue-of-The-Bridge-on-Nuclear-Energy-Revisited
https://flowcharts.llnl.gov/


Future clean energy systems – transforming the energy paradigm
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Variable renewables, 
municipal waste, fossil 

with carbon capture, etc.

Light water reactors, 
high temperature 

advanced reactors, 
small modular reactors, 

microreactors, etc. 

Integrated energy 
systems (IES) 
leverage the 

contributions from 
nuclear fission 

beyond electricity



Potential nuclear-driven 
IES opportunities
Examples not exhaustive

Source: INL, 
National Reactor 
Innovation Center 
(NRIC) Integrated 
Energy Systems 
Demonstration Pre-
Conceptual Designs, 
April 2021
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Other options may include 
methanol, synthetic methane28

https://nric.inl.gov/wp-content/uploads/2021/06/NRIC-IES-Demonstration-Pre-conceptual-Designs-Report-1.pdf


IES guiding questions

• What are economically and technically viable options for integrated 
energy system (IES) coupling to nuclear power plants in specific grid 
energy systems?

• What is the statistically ideal mix for Nuclear-IES within various markets?

• What are driving economic factors that existing and future nuclear 
technologies can leverage though IES production coupling?

• What are the optimal coupling strategies between IES technologies and 
nuclear plants?
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Evaluating the options: Heat market study (2016)
Key conclusions:

• Less than 0.5% of all U.S. manufacturing 
facilities were responsible for nearly 25% 
of industrial GHG emissions 

• SMR technologies are expected to be 
well-matched to the scale of demand of oil 
refineries, pulp/paper manufacturing, 
methanol, fertilizer plants, among others

• Heat recuperation and temperature 
boosting are important thermal energy 
management concepts that may benefit 
lower temperature energy sources

• Hybrid thermal/electricity generation may 
help balance hourly, daily, and/or seasonal 
electrical cycles

NREL/TP--6A50-66763
INL/EXT--16-39680
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http://www.osti.gov/scitech/biblio/1334495-generation-use-thermal-energy-industrial-sector-
opportunities-reduce-its-carbon-emissions30

http://www.osti.gov/scitech/biblio/1334495-generation-use-thermal-energy-industrial-sector-opportunities-reduce-its-carbon-emissions


Nuclear-hydrogen production and utilization

Motivation for H2 production to 
support multiple processes/ 
products beyond electricity
1) Provides energy storage, for 

electricity production or H2 user 
(e.g., chemicals and fuels 
synthesis, steel manufacturing, 
ammonia-based fertilizers) 

2) Provides second source of revenue 
to the generator; allows generator 
to operate at nominal power at all 
times

3) Provides opportunity for grid 
services, including reserves and 
grid regulation
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Why hydrogen?

Hydrogen applications in industry
• Agriculture/chemical industry: ammonia, 

ammonia-based fertilizers
• Petroleum refining: hydrocracking to produce 

gasoline, diesel
• Methanol production
• Other: 

− Food (e.g., hydrogenated oils)
− Metalworking
− Welding
− Flat glass production
− Electronics manufacturing
− Medical applications Data source: Hydrogen Europe

hydrogeneurope.eu/hydrogen-applications 
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IES analysis and optimization tool suite

• Technoeconomic Assessment for IES:
Framework for Optimization of ResourCes
and Economics (FORCE)

− Optimization
• Portfolio
• Dispatch

− Analysis
• Economic
• Stochastic
• Physical

− Supervisory Control
− Workflow Automation

• Stochastic Analysis
• Synthetic Histories

• Economic Metrics
• Cash Flows

FARM
• Validation
• Supervisory Control

• Transient Modeling
• Model Database

• Technoeconomic Analysis
• Component Sizing Optimization
• Dispatch Optimization

For more information and to access opensource tools, see 
https://ies.inl.gov/SitePages/System_Simulation.aspx.

Recorded training modules can be viewed at 
https://ies.inl.gov/SitePages/FORCE_2022.aspx. 
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Example: Disruptive potential of nuclear produced hydrogen

• Collaboration between INL, ANL, NREL, Constellation (Exelon), and Fuel Cell Energy 
• Evaluated potential of using existing nuclear plants to make hydrogen via high 

temperature steam electrolysis (HTSE) in parallel to grid electricity
− Low grid pricing à hydrogen is more profitable 
− High grid pricing à grid is more profitable
− H2 storage provides flexibility in plant 

operations, ensures that all demands are met 
− H2 off-take satisfies demand across steel 

manufacturing, ammonia and fertilizer production, 
and fuel cells for transportation

• Analysis results suggest a possible revenue increase of 
$1.2 billion ($2019) over a 17-year span 
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LWR-HTSE LCOH as a function of electricity price compared to the Steam Methane 
Reforming (StMR) plant (with and without carbon capture and sequestration [CCS]) 

LCOH with low, baseline, and high natural gas pricing. 

Example: Disruptive potential of nuclear produced hydrogen

• Outcome: Award from the DOE EERE Hydrogen & 
Fuel Cell Technologies Office with joint Nuclear 
Energy funding for follow-on work and 
demonstration at Exelon Nine-Mile Point plant. 

• Full report: Evaluation of Hydrogen Production 
Feasibility for a Light Water Reactor in the Midwest
(INL/EXT-19-55395)
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Four projects have been selected for demonstration of 
hydrogen production at U.S. nuclear power plants (NPP)
• H2 production using direct electrical power offtake
• Develop monitoring and controls procedures for scaleup to 

large commercial-scale H2 plants

• Evaluate power offtake dynamics on NPP power 
transmission stations to avoid NPP flexible operations

• Produce H2 for captive use by NPPs and clean hydrogen 
markets

Projects
• Constellation: Nine-Mile Point NPP (~1 MWe LTE/PEM)

• Energy Harbor: Davis-Besse NPP (~1-2MWe LTE/PEM)

• Xcel Energy: Prairie Island NPP (~150 kWe HTSE)

• APS/Pinnacle West Hydrogen: Palo Verde 
Generating Station (~15-20 MWe LTE/PEM)

• FuelCell Energy: Demonstration at INL (250 kWe)

Nuclear-H2 demonstration projects
Davis-Besse NPP

LTE-PEM
Nine Mile Point NPP

LTE/PEM
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Palo Verde Generating 
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Operations with flexible thermal and electrical power dispatch
• The INL Human Systems Simulation Laboratory was used 

to test concepts for dispatching thermal and electrical 
power from nuclear reactors to a H2 electrolysis plant

− Two formerly licensed operators tested 15 scenarios
− A modified full-scope generic Pressurized-Water 

Reactor was used to emulate the nuclear power plant
− A prototype human-system interface was developed 

and displayed in tandem with the virtual analog panels
− An interdisciplinary team of operations experts, nuclear 

engineers, and human factors experts observed the 
operators performing the scenarios

• This exercise emphasized the need to support the adoption 
of thermal power dispatch by

− Leveraging automation to augment any additional 
operator tasking

− Monitoring energy dispatch to a second user
37



Thermal integration of steam electrolysis
Safety analysis summary conclusions
• The LWRS generic probabilistic risk 

assessment (PRA) investigation into 
licensing considerations concluded that 
following the assumptions made:

− The licensing criteria is met for a 
large-scale HTE facility sited 1 km 
from a generic PWR and BWR

− The safety case for less than 1 km 
distance is achievable

• Report available: INL/EXT-20-60104, 
Flexible Plant Operation and Generation 
Probabilistic Risk Assessment of a Light 
Water Reactor Coupled with a High-
Temperature Electrolysis Hydrogen 
Production Plant, OSTI link: 
https://www.osti.gov/biblio/1691486
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Microreactor integration with a microgrid
Microreactor Applications Research Validation and 
Evaluation (MARVEL) Objective: 
Operational reactor that produces combined heat and 
power (CHP) to a functional microgrid 

MARVEL Construction: Dec 2022
MARVEL Criticality: Dec 2023

Demonstrate nuclear 
microgrid operations and 
provide opportunity to 
demonstrate operation with 
coupled energy users, such 
as hydrogen production and 
desalination.
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National Reactor Innovation Center (NRIC) 
advanced reactor testing infrastructure

• Goal: Demonstrate two advanced reactors by 2025

• Strategy: 
− Repurpose two facilities at INL and establish two test beds to provide 

confinement for reactors to go critical for the first time
− Build/establish testing infrastructure for fuels and components

• Capabilities:
− NRIC DOME (Demonstration of Microreactor Experiments)

• Advanced Microreactors up to 20 MWth
• High-Assay Low-Enriched Uranium (HALEU) fuels < 20% 

− NRIC LOTUS (Laboratory for Operations and Testing in the US)
• Up to 500 kWth experimental reactors
• Safeguards category one fuels

− Experimental Infrastructure
• Molten Salt Thermophysical Examination Capability
• Helium Component Test Facility 

Anticipate initial reactor testing in ~2024.
Flexible testbed to support testing of 

multiple reactor concepts using the same 
infrastructure ~annually. 
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Nuclear–Carbon Conversion Case Study

Representative Coal Conversion Process  

Goal: Use an 
advanced reactor 
to generate steam, 
heat, and electricity 
for a coal 
conversion plant. 
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Nuclear Synthetic Fuels Production

Representative Nuclear-Coupled Synthetic Fuels Process

Goal: Demonstrate the economic potential of 
using light water or advanced nuclear reactors 
for synthetic fuels production. 
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