

THE UNIVERSITY OF BRITISH COLUMBIA

Constraining neutrinoless double beta decay nuclear matrix elements with *ab initio* theory

Antoine Belley APCTP 2022

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Double beta decays

Second order order weak process

Only possible when single beta decay is energetically forbidden (or strongly disadvantaged)

3

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p \\ e \\ W & e \\ p \\ M & e \\ n \longrightarrow p \\ p$
Half-life Formula	$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} M^{2\nu} ^2$	$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$
NME Formula	$M^{2\nu} pprox M_{GT}^{2\nu}$	$M^{0\nu} = M^{0\nu}_{GT} - \left(\frac{g_v}{g_a}\right)^2 M^{0\nu}_F + M^{0\nu}_T - 2g_{\nu\nu}M^{0\nu}_{CT}$
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p e e$ $W \swarrow M$ $W \checkmark e e$ $n \longrightarrow p$
Half-life	$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} M^{2\nu} ^2$	$[T^{0\nu}]^{-1} - G^{0\nu} M^{0\nu} \left[2 \left(\frac{\langle m_{\beta\beta} \rangle}{2} \right)^2 \right]$
Formula		$\begin{bmatrix} \mathbf{I}_{1/2} \end{bmatrix} = \mathbf{O} \begin{bmatrix} \mathbf{M} & \mathbf{I}_{e} \end{bmatrix} \begin{bmatrix} m_{e} \end{bmatrix}$
NME	$M^{2\nu} pprox M_{GT}^{2\nu}$	$M^{0\nu} = M^{0\nu}_{GT} - (\frac{g_v}{g_a})^2 M^{0\nu}_F + M^{0\nu}_T - 2g_{\nu\nu} M^{0\nu}_{CT}$
Formula		
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

 $2v\beta\beta vs 0v\beta\beta$

4

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow \bar{\nu}$ $W \longrightarrow e$ $n \longrightarrow p$	$n \longrightarrow p \\ e \\ W & e \\ p \\ W & e \\ n \longrightarrow p $
Half-life Formula	$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu} M^{2\nu} ^2$	$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m}\right)^2$
Formula	/	m_e
NME $ $	$M/2\nu \sim M/2\nu$	$\Lambda \sqrt{2\nu} = \Lambda \sqrt{2\nu} (g_v) 2 \Lambda \sqrt{2\nu} + \Lambda \sqrt{2\nu} 2 \alpha \sqrt{2\nu}$
Formula	$VI \sim VI GT$	$M^{-} = M_{GT} - \left(\frac{g_a}{g_a}\right)^{-} M_{F}^{-} + M_{T}^{-} - 2g_{\nu\nu}M_{CT}^{-}$
LNV	No	Yes!
Observed	Yes	No

*NME : Nuclear matrix elements **LNV : Lepton number violation

Discovery, accelerated

RIUMF

Status of 0vββ-decay Matrix Elements

5

Current calculations from phenomenological models have large spread in results.

Compiled values from Engel and Menéndez, Rep. Prog. Phys. 80 046301 (2017); Yao, arXiv:2008.13249 (2020); Brase et al, arXiv:2108.11805 (2021)

Status of 0vββ-decay Matrix Elements

5

Current calculations from phenomenological models have large spread in results.

Status of 0vββ-decay Matrix Elements

6

Current calculations from phenomenological models have large spread in results.

Status of 0vββ-decay Matrix Elements

Current calculations from phenomenological models have large spread in results.

6

Status of 0vββ-decay Matrix Elements

7

Current calculations from phenomenological models have large spread in results.

RIUMF

Status of 0vββ-decay Matrix Elements

7

Current calculations from phenomenological models have large spread in results.

Ab initio nuclear theory

8

Ab initio nuclear theory: The recipe

- 1. Construct nuclear interaction from principle (using chiral effective field theory (χ -EFT))
- 2. Solve the many-body Schrödinger equation for the nucleus with this interaction

RIUMF

10

Expansion order by order of the nuclear forces

Reproduces symmetries of low-energy QCD using nucleons as fields and pions as force carriers.

Machleidt and Entem, Phys. Rep., vol.503, no.1, pp.1–75 (2011)

Similarity renormalization group

The general idea is to simplify the Hamiltonian by using a continuous unitary transformation:

$$\hat{H}(s) = \hat{U}(s)\hat{H}(0)\hat{U}^{\dagger}(s)$$

where s parameterized the continuous transformation, and $\hat{H}(0)$ is the starting Hamiltonian.

11

TRIUMF Similarity renormalization group: The flow equation

12

Since we are looking for a continuous transformation of $\hat{H}(s)$, we are interested in finding how it changes as we vary the parameter, i.e.

$$\frac{d\hat{H}(s)}{ds} = \frac{d\hat{U}(s)}{ds}\hat{H}(0)\hat{U}^{\dagger}(s) + \hat{U}(s)\hat{H}(0)\frac{d\hat{U}^{\dagger}(s)}{ds}$$

By inserting the identity in the form of $\hat{I} = \hat{U}^{\dagger}(s)\hat{U}(s)$, we get

$$\frac{d\hat{H}(s)}{ds} = \frac{d\hat{U}(s)}{ds} \left(\hat{U}^{\dagger}(s)\hat{U}(s)\right)\hat{H}(0)\hat{U}^{\dagger}(s) + \hat{U}(s)\hat{H}(0)\left(\hat{U}^{\dagger}(s)\hat{U}(s)\right)\frac{d\hat{U}^{\dagger}(s)}{ds}$$
$$= \frac{d\hat{U}(s)}{ds}\hat{U}^{\dagger}(s)\hat{H}(s) + \hat{H}(s)\hat{U}(s)\frac{d\hat{U}^{\dagger}(s)}{ds}$$

Similarity renormalization group: The generator

Note that $\hat{U}(s)$ being unitary implies that

$$\frac{d}{ds}\left(\hat{U}(s)\hat{U}^{\dagger}(s)\right) = \frac{d}{ds}\left(\hat{I}\right) = 0 \Rightarrow \frac{d\hat{U}(s)}{ds}\hat{U}^{\dagger}(s) = -\hat{U}(s)\frac{d\hat{U}^{\dagger}(s)}{ds}$$

We now define

$$\hat{\eta}(s) \equiv \frac{d\hat{U}(s)}{ds}\hat{U}^{\dagger}(s) = -\hat{\eta}^{\dagger}(s)$$

where we call $\hat{\eta}(s)$ the generator of the flow. We also note by the equation above that the generator is an anti-Hermitian operator.

Discovery, accelerated

13

TRIUMF Similarity renormalization group: Final form of the flow equation

We found the in the s parameter for our Hamiltonian to be

$$\frac{d\hat{H}(s)}{ds} = \frac{d\hat{U}(s)}{ds}\hat{U}^{\dagger}(s)\hat{H}(s) + \hat{H}(s)\hat{U}(s)\frac{d\hat{U}^{\dagger}(s)}{ds}$$

Writing the expression above in term of the generator we have defined, we get

$$\frac{d\hat{H}(s)}{ds} = \frac{d\hat{U}(s)}{ds}\hat{U}^{\dagger}(s)\hat{H}(s) + \hat{H}(s)\hat{U}(s)\frac{d\hat{U}^{\dagger}(s)}{ds}$$
$$= \hat{\eta}(s)\hat{H}(s) + \hat{H}(s)\hat{\eta}^{\dagger}(s)$$
$$= \hat{\eta}(s)\hat{H}(s) - \hat{H}(s)\hat{\eta}(s)$$

We see that the last line is simply the commutator of the generator and the Hamiltonian and so we get for the flow equation:

$$\frac{d\hat{H}(s)}{ds} = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

14

VS-IMSRG

15

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

VS-IMSRG

16

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

VS-IMSRG

17

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerate

VS-IMSRG

18

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

Results

CRIUMF Benchmarking 0vββ Decay in Light Nuclei: Summary

Benchmark with other ab initio method for fictitious decays in light nuclei

Yao, **Belley**, et al., PhysRevC.103.014315

20

Reasonable to good agreement in all cases

Ab Initio 0vββ Decay: 48Ca, 76Ge and 82Se

Things to add: valence space variation, two-body currents, IMSRG(3), ...

Belley, et al., in prep

Ab Initio 0vββ **Decay: The contact term**

Belley, et al., in prep

22

Ab Initio 0vββ Decay: ¹³⁰Te, ¹³⁶Xe

¹³⁰Te, ¹³⁶Xe major players in global searches with SNO+, CUORE and nEXO

Increased E_{3max} capabilities allow first converged ab initio calculations [EM1.8/2.0, Δ_{GO} , N3LO_{LNL}]²³

$0v\beta\beta$ -decay Matrix Elements: The new picture

Belley, et al., in prep

24

CRIUMF Ab Initio 0vββ Decay: Effect on experimental limits

CRIUMF Ab Initio 0vββ Decay: Effect on experimental limits

% TRIUMF Constraining uncertainty:correlation with DGT

Double Gamow-Teller giant resonance is a charge exchange process whose NMEs have been 27 found to be correlated to $0\nu\beta\beta$ NMEs in nuclear shell models, EDF and IBM.

TRIUMF Constraining uncertainty:correlation with DGT from ab initio

Yao, Ginnett, Belley et al., arXiv:2204.12971 (2022)

Discovery, iccelerated

Constraining uncertainty: using emulators

Discovery, accelerate

29

30

%TRIUMF

Summary...

- 1) Computed first ever ab initio NMEs of isotopes of experimental interest, which is a first step towards computing NME with reliable theoretical uncertainties.
- 2) Computed NME with multiple interactions for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹³⁰Te and ¹³⁶Xe.
- 3) Study of effect of the contact term on the NMEs.
- 4) Studied correlation between DGT and $0\nu\beta\beta$ for a wide range of isotopes.
- 5) Studied correlations between multiple operators using a wide range of interactions based on emulators.

... and outlook

- 1) Include finite momentum 2-body currents.
- 2) Large scale ab initio uncertainty analysis with other methods for "final" NMEs.
- 3) Study other exotic mechanism proposed for $0\nu\beta\beta$.
- 4) Compute the NME for $0\lor$ EC

Discovery, accelerated

Questions?

abelley@triumf.ca

Discovery, accelerated

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

(under closure approximation)

$$M^{0\nu}_{\alpha} = \langle 0^+_f | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0^+_i \rangle$$

 $|0_i^+\rangle$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$
$$M_{\alpha}^{0\nu} = \langle 0_f^+ | V_{\alpha}(q) S_{\alpha}(q) \tau_1^+ \tau_2^+$$
$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q + E_{cl})}$$
Scalar potential

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_{\alpha}^{0\nu} = \langle 0_f^+ | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0_i^+ \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q + E_{cl})} \longrightarrow \text{Closure energy}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M_{\alpha}^{0\nu} = \langle 0_f^+ | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0_i^+ \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q + E_{cl})}$$
 Neutrino Potential

$$\begin{split} h_F(q) &= \frac{g_V^2(q)}{g_V^2} \\ h_{GT}(q) &= \frac{1}{g_A^2} \left[g_A^2(q) - \frac{g_A(q)g_P(q)q^2}{3m_N} + \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{6m_N^2} \right] \\ h_T(q) &= \frac{1}{g_A^2} \left[\frac{g_A(q)g_P(q)q^2}{3m_N} - \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{12m_N^2} \right]. \end{split}$$

Discovery, accelerated

$$\begin{split} M_{L}^{0\nu} &= M_{GT}^{0\nu} - \left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{0\nu} + M_{T}^{0\nu} \\ M_{\alpha}^{0\nu} &= \langle 0_{f}^{+} | V_{\alpha}(q) S_{\alpha}(q) \tau_{1}^{+} \tau_{2}^{+} | 0_{i}^{+} \rangle \\ V_{\alpha}(q) &= \frac{R_{Nucl}}{2\pi^{2}} \frac{h_{\alpha}(q)}{q(q + E_{cl})} \end{split}$$
 Operator acting on spin
$$\begin{split} h_{F}(q) &= \frac{g_{V}^{2}(q)}{g_{V}^{2}} \\ h_{GT}(q) &= \frac{1}{g_{A}^{2}} \left[g_{A}^{2}(q) - \frac{g_{A}(q)g_{F}(q)q^{2}}{3m_{N}} + \frac{g_{F}^{2}(q)q^{4}}{12m_{N}^{2}} + \frac{g_{M}^{2}(q)q^{2}}{6m_{N}^{2}} \right] \\ h_{T}(q) &= \frac{1}{g_{A}^{2}} \left[\frac{g_{A}(q)g_{F}(q)q^{2}}{3m_{N}} - \frac{g_{F}^{2}(q)q^{4}}{12m_{N}^{2}} + \frac{g_{M}^{2}(q)q^{2}}{12m_{N}^{2}} \right]. \end{split} \\ \end{split}$$

$$M_L^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

$$M^{0\nu}_{\alpha} = \langle 0^+_f | V_{\alpha}(\boldsymbol{q}) S_{\alpha}(\boldsymbol{q}) \tau_1^+ \tau_2^+ | 0^+_i \rangle$$

$$V_{\alpha}(q) = \frac{R_{Nucl}}{2\pi^2} \frac{h_{\alpha}(q)}{q(q+E_{cl})}$$

$$\begin{split} h_F(q) &= \frac{g_V^2(q)}{g_V^2} \\ h_{GT}(q) &= \frac{1}{g_A^2} \left[g_A^2(q) - \frac{g_A(q)g_P(q)q^2}{3m_N} + \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{6m_N^2} \right] \\ h_T(q) &= \frac{1}{g_A^2} \left[\frac{g_A(q)g_P(q)q^2}{3m_N} - \frac{g_P^2(q)q^4}{12m_N^2} + \frac{g_M^2(q)q^2}{12m_N^2} \right]. \end{split}$$

$$\begin{split} S_F &= 1\\ S_{GT} &= \boldsymbol{\sigma_1} \cdot \boldsymbol{\sigma_2}\\ S_T &= -3[(\boldsymbol{\sigma_1} \cdot \hat{\boldsymbol{q}})(\boldsymbol{\sigma_2} \cdot \hat{\boldsymbol{q}}) - (\boldsymbol{\sigma_1} \cdot \boldsymbol{\sigma_2})] \,. \end{split}$$

COVE COVE

Ŭ U

Short-Range Matrix Elements

 $M_{S}^{0\nu} = -2g_{\nu\nu}M_{CT}^{0\nu}$

Short-Range Matrix Elements

 $-2g_{\nu\nu}M_{CT}^{0\nu}$

Unknown coupling constants.

Method by Cirigliano et al. (JHEP05(2021)289) allows to extract this coupling for ab initio method with 30% accuracy for each nuclear interaction

> Discovery, accelerate

Short-Range Matrix Elements

Unknown coupling constants.

 $M_{\rm S}^{0\nu} = -2g_{\nu\nu}M_{\rm C}^{0\nu}$

Method by Cirigliano et al. (JHEP05(2021)289) allows to extract this coupling for ab initio method with 30% uncertainty for each nuclear interaction Contact operator regularized with non-local regulator matching the nuclear interaction used:

$$M_{CT}^{0\nu} = \langle 0_f^+ | \frac{R_{Nucl}}{8\pi^3} \left(\frac{m_N g_A^2}{4f_\pi^2} \right)^2 \exp(-(\frac{p}{\Lambda_{int}})^{2n_{int}}) \exp(-(\frac{p'}{\Lambda_{int}})^{2n_{int}}) | 0_i^+ \rangle$$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \left[\sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}\right]$$

One-body kinetic energy $\hat{T}^{[1]}$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

Two-body kinetic energy $\,\hat{T}^{[2]}$

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

The IMSRG:NO2B Hamiltonian

Considering the nuclear Hamiltonian:

NN forces

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

Considering the nuclear Hamiltonian:

 $\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_i^2}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_i \hat{p}_j\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$

The IMSRG:NO2B Approximation

Considering the nuclear Hamiltonian:

$$\hat{H} = \left(1 - \frac{1}{\hat{A}}\right) \sum_{i} \frac{\hat{p}_{i}^{2}}{2m} + \frac{1}{\hat{A}} \left(-\frac{1}{m} \sum_{i < j} \hat{p}_{i} \hat{p}_{j}\right) + \hat{V}^{[2]} + \hat{V}^{[3]}$$

We can rewrite the Hamiltonian in terms of normal ordered operators as:

$$\hat{H} = E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$

$$\hat{H} = E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\}$$
$$E = \left(1 - \frac{1}{A}\right) \sum_a \langle a \mid \hat{T}^{[1]} \mid a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \mid \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \mid ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \mid \hat{V}^{[3]} \mid abc \rangle n_a n_b n_c$$

$$\begin{aligned} \hat{H} &= E + \sum_{ij} (\hat{f}_{ij}) a_i^{\dagger} a_j \} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k \} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l \} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \end{aligned}$$

$$\begin{split} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} (\Gamma_{ijkl}) \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, kl \rangle + \sum_a \langle ija \,|\, \hat{V}^{[3]} \,|\, kla \rangle n_a \end{split}$$

Discovery, accelerated

Discovery, accelerated

$$\begin{split} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a \,|\, \hat{T}^{[1]} \,|\, a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc \,|\, \hat{V}^{[3]} \,|\, abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i \,|\, \hat{T}^{[1]} \,|\, j \rangle + \sum_a \langle ia \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab \,|\, \hat{V}^{[3]} \,|\, jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij \,|\, \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} \,|\, kl \rangle + \sum_a \langle ija \,|\, \hat{V}^{[3]} \,|\, kla \rangle n_a \end{split}$$

$$\begin{aligned} \hat{H} &= E + \sum_{ij} f_{ij} \{a_i^{\dagger} a_j\} + \frac{1}{4} \sum_{ijkl} \Gamma_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\} + \frac{1}{36} \sum_{ijklmn} W_{ijklmn} \{a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_n a_m a_l\} \\ E &= \left(1 - \frac{1}{A}\right) \sum_a \langle a | \hat{T}^{[1]} | a \rangle n_a + \frac{1}{2} \sum_{ab} \langle ab | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | ab \rangle n_a n_b + \frac{1}{6} \sum_{abc} \langle abc | \hat{V}^{[3]} | abc \rangle n_a n_b n_c \\ f_{ij} &= \left(1 - \frac{1}{A}\right) \langle i | \hat{T}^{[1]} | j \rangle + \sum_a \langle ia | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | ja \rangle n_a + \frac{1}{2} \sum_{abc} \langle iab | \hat{V}^{[3]} | jab \rangle n_a n_b \\ \Gamma_{ijkl} &= \langle ij | \frac{1}{A} \hat{T}^{[2]} + \hat{V}^{[2]} | kl \rangle + \sum_a \langle ija | \hat{V}^{[3]} | kla \rangle n_a \end{aligned}$$

The VS-IMSRG

Choose generator in order to decouple the valence-space from the excluded space:

$$\eta = \sum_{ij} \eta_{ij} \{a_i^{\dagger} a_j\} + \sum_{ijkl} \eta_{ijkl} \{a_i^{\dagger} a_j^{\dagger} a_l a_k\}$$

for $ij \in [pc, ov]$ and $ijkl \in [pp'cc', pp'vc, opvv']$ for c in the core, v in the valence-space, o outside the valence-space and p not in the core.

$$\eta_{ij} = \frac{1}{2} \arctan\left(\frac{2f_{ij}}{f_{ii} - f_{jj} + \Gamma_{ijij}}\right)$$
$$\eta_{ijkl} = \frac{1}{2} \arctan\left(\frac{2\Gamma_{ijkl}}{f_{ii} + f_{jj} - f_{kk} - f_{ll} + \Gamma_{ijij} + \Gamma_{klkl} - \Gamma_{ikik} - \Gamma_{ilil} - \Gamma_{jkjk} - \Gamma_{jljl}}\right)$$

Exotic Mechanisms

Exotic Mechanisms

$$\mathscr{H}_{W} = \frac{G_{\beta}}{\sqrt{2}} \left[j_{L}^{\mu} J_{L,\mu}^{\dagger} + \sum_{\alpha,\beta} \epsilon_{\alpha}^{\beta} j_{\alpha} J_{\beta}^{\dagger} \right]$$

Exotic Mechanisms

Exotic Mechanisms

Exotic Mechanisms

Exotic Mechanisms

Since $0\nu\beta\beta$ decay is a 2nd order weak process:

Discovery, accelerate **Non-Closure NME**

Non-Closure NME

Assuming that both electron carry the same energy:

$$O(\boldsymbol{q}) = \frac{R_{Nucl}}{2\pi^2 g_a^2} \sum_{N} \frac{J^{\mu}(\boldsymbol{q}) |N\rangle \langle N| J_{\mu}(-\boldsymbol{q})}{q\left(q + E_N - \frac{E_i + E_f}{2}\right)}$$

where, under the impulse approximation, the currents are given by

$$J^{0}(\boldsymbol{q}) = \tau^{+} \left[g_{V}(q^{2}) - \frac{g_{M}(q^{2}) - g_{V}(q^{2})}{4m_{N}^{2}} q^{2} \right]$$
$$J^{k}(\boldsymbol{q}) = -\tau^{+} \left[g_{A}(q^{2})\boldsymbol{\sigma} + ig_{M}(q^{2})\frac{\boldsymbol{\sigma} \times \boldsymbol{q}}{2m_{N}} - g_{P}(q^{2})\frac{\boldsymbol{\sigma} \cdot \boldsymbol{q}}{2m_{N}} \boldsymbol{q} \right]$$

Closure approximation

The closure approximation consist in taking $E_N - \frac{E_i + E_f}{2} \approx E_C$ for every intermediate state, allowing to factor out the energy denominator:

$$O(\boldsymbol{q}) = \frac{R_{Nucl}}{2\pi^2 g_a^2} \sum_{N} \frac{J^{\mu}(\boldsymbol{q}) |N\rangle \langle N| J_{\mu}(-\boldsymbol{q})}{q\left(q + E_N - \frac{E_i + E_f}{2}\right)} \to \frac{R_{Nucl}}{2\pi^2 g_a^2} \frac{1}{q\left(q + E_C\right)} J^{\mu}(\boldsymbol{q}) J_{\mu}(-\boldsymbol{q})$$

Taking the product of the currents then allows to obtain the usual GT, F and T part.

Usual test of the closure approximation, reintroduce the dependance in the denominator and do the summation over the intermediate states but still consider a two-body scalar operator rather than the product of 2 vector currents.

Using Gaussian Process as an emulator

- Multi-tasks Multi-Fidelity Gaussian Process (MMGP) proposed in [1] can be used to probe LEC space.
- Multi-Tasks Gaussian Process: Uses multiple correlated outputs from same inputs by defining the kernel as $k_{inputs} \otimes k_{outputs}$. This allows to increase the number of data points without needing to do more expansive calculations.
- Multi-Fidelity Gaussian Process: Uses few data points of high fidelity (full IMSRG calculations) and many data points of low fidelity (e.g. Hartree-Fock results). The difference function is fitted by a Gaussian process in order to predict the value of full calculations using the low fidelity data points.

[1] Q. Lin, J. Hu, Q. Zhou, Y. Cheng, Z. Hu, I. Couckuyt, and T. Dhaene, Knowledge-Based Systems 227, 107151 (2021).