

Shedding Light on Neutrinoless Double-Beta Decay Nuclear Matrix Elements

Lotta Jokiniemi
Postdoc, Theory Department, TRIUMF
2nd Joint Canada-APCTP Meeting on Nuclear
Theory

Outline

Introduction

Improved Double-Beta-Decay Calculations

Other Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Ab Initio Muon-Capture Studies

Summar

$$\beta^-: n \to p + e^- + \bar{\nu}_e$$

 $\beta^+: p \to n + e^+ + \nu_e$

May happen, when β-decay is not allowed / suppressed

- ► May happen, when β-decay is not allowed / suppressed
- ► Two modes:

Double-Beta Decay

$$\beta^-: n \to p + e^- + \bar{\nu}_e$$

 $\beta^+: p \to n + e^+ + \nu_e$

- ► May happen, when β-decay is not allowed / suppressed
- ► Two modes:
 - Standard two-neutrino $\beta\beta$ decay $(2\nu\beta\beta)$

Double-Beta Decay

$$\beta^{-}: n \to p + e^{-} + \bar{\nu}_{e}$$
$$\beta^{+}: p \to n + e^{+} + \nu_{e}$$

- ► May happen, when β-decay is not allowed / suppressed
- ► Two modes:
 - Standard two-neutrino $\beta\beta$ decay $(2\nu\beta\beta)$
 - ► Hypothetical neutrinoless ββ (0νββ) decay

Double-Beta Decay

► Allowed by the Standard Model

$$AZX_N \to_{Z+2}^A Y_{N-2} + 2e^- + 2\bar{\nu}_e$$

- ► Allowed by the Standard Model
- lacktriangle Observed in \sim a dozen nuclei

$$AZX_N \to_{Z+2}^A Y_{N-2} + 2e^- + 2\bar{\nu}_e$$

- ► Allowed by the Standard Model
- ► Observed in ~ a dozen nuclei
 - $lacktriangledown t^{2
 u}_{1/2}\gtrsim 10^{20} ext{ years}$ (age of the Universe: $\sim 10^{10}$ years)

$$\begin{bmatrix} {}^{A}_{Z}X_{N} \rightarrow_{Z+2}^{A} Y_{N-2} + 2e^{-} + 2\bar{\nu}_{e} \end{bmatrix}$$

- ► Allowed by the Standard Model
- ► Observed in ~ a dozen nuclei
 - $t_{1/2}^{2\nu} \gtrsim 10^{20}$ years (age of the Universe: $\sim 10^{10}$ years)
 - ► Rarest measured nuclear process!

$$\begin{bmatrix} {}^{A}_{Z}\mathbf{X}_{N} \rightarrow_{Z+2}^{A} \mathbf{Y}_{N-2} + 2e^{-} \end{bmatrix}$$

Requires that the neutrino is its own antiparticle

$$\begin{bmatrix} {}^{A}_{Z}\mathbf{X}_{N} \rightarrow_{Z+2}^{A} \mathbf{Y}_{N-2} + 2e^{-} \end{bmatrix}$$

- Requires that the neutrino is its own antiparticle
- ➤ Violates the lepton-number conservation law by two units

$$\begin{bmatrix} {}^{A}_{Z}\mathbf{X}_{N} \rightarrow_{Z+2}^{A} \mathbf{Y}_{N-2} + 2e^{-} \end{bmatrix}$$

- Requires that the neutrino is its own antiparticle
- ➤ Violates the lepton-number conservation law by two units
- $ightharpoonup rac{1}{t_{1/2}^{0
 u}} \propto |rac{m_{etaeta}}{m_e}|^2, \quad m_{etaeta} = \sum_i^{\text{light}} U_{ei}^2 m_i$
 - → Neutrino masses!

$$\begin{bmatrix} {}^{A}_{Z}\mathbf{X}_{N} \rightarrow_{Z+2}^{A} \mathbf{Y}_{N-2} + 2e^{-} \end{bmatrix}$$

- Requires that the neutrino is its own antiparticle
- ► Violates the lepton-number conservation law by two units
- $ightharpoonup \frac{1}{t_{1/2}^{0\nu}} \propto |\frac{m_{\beta\beta}}{m_e}|^2, \quad m_{\beta\beta} = \sum_i^{\text{light}} U_{ei}^2 m_i$ → Neutrino masses!
- ► Has not (yet) been measured!

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

What would be measured

► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$

- ► Axial-vector coupling $(g_A^{\rm free} \approx 1.27)$
 - ► Quenched or not?

- ► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor

- ► Axial-vector coupling $(g_{\rm A}^{\rm free} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor
 - ► Numerically solved from Dirac equation

- ► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor
 - ► Numerically solved from Dirac equation
- ► Nuclear matrix element (NME)

- ► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor
 - ► Numerically solved from Dirac equation
- Nuclear matrix element (NME)
 - Has to be provided from nuclear theory

- ► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor
 - ► Numerically solved from Dirac equation
- Nuclear matrix element (NME)
 - Has to be provided from nuclear theory
 - ► Hard to estimate the errors!

- ► Axial-vector coupling $(g_A^{\text{free}} \approx 1.27)$
 - ► Quenched or not?
- ► Phase-space factor
 - ► Numerically solved from Dirac equation
- ► Nuclear matrix element (NME)
 - Has to be provided from nuclear theory
 - ► Hard to estimate the errors!

M. Agostini et al., arXiv:2202.01787 (2022)

Nuclear Matrix Elements for $\beta\beta$ Decays

For 0νββ decay

$$M_{\rm L}^{0\nu} = M_{\rm GT}^{0\nu} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M_{\rm F}^{0\nu} - M_{\rm T}^{0\nu} ,$$

where (for K = GT, F, T)

$$M_K^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \sum_{l=l} (0_f^+ || \mathcal{O}_{Kb} H_K(r_{ab}, E_k) || 0_i^+)$$

with
$$\mathcal{O}_{\mathrm{GT}} = au_a^- au_b^- oldsymbol{\sigma}_a oldsymbol{\sigma}_b$$
, $\mathcal{O}_{\mathrm{F}} = au_a^- au_b^-$, and $\mathcal{O}_{\mathrm{T}} = au_a^- au_b^- S_{ab}^{\mathrm{T}}$.

Nuclear Matrix Elements for \$\beta\$\$ **Decays**

► For $\mathbf{0}\nu\beta\beta$ decay

$$M_{
m L}^{0
u} = M_{
m GT}^{0
u} - \left(\frac{g_{
m V}}{g_{
m A}}\right)^2 M_{
m F}^{0
u} - M_{
m T}^{0
u} ,$$

where (for K = GT, F, T)

$$M_K^{0\nu} = \frac{2R}{\pi g_{\Delta}^2} \sum_{l=1} (0_f^+ || \mathcal{O}_{Kb} H_K(r_{ab}, E_k) || 0_i^+)$$

with $\mathcal{O}_{\mathrm{GT}} = au_a^- au_b^- oldsymbol{\sigma}_a oldsymbol{\sigma}_b, \, \mathcal{O}_{\mathrm{F}} = au_a^- au_b^-,$ and $\mathcal{O}_{\mathrm{T}} = au_a^- au_b^- S_{ab}^{\mathrm{T}}.$

► For
$$2\nu\beta\beta$$
 decay

$$M^{2\nu} = \sum_{k} \frac{(0_f^+||\tau^-\boldsymbol{\sigma}||1_k^+)(1_k^+||\tau^-\boldsymbol{\sigma}||0_i^+)}{(E_k - (E_i + E_f)/2 + m_e)/m_e}$$

► Ab initio methods (IMSRG, NCSM,...)

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them

- Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem \rightarrow computational limitations
- ► Nuclear Shell Model (NSM)

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem \rightarrow computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - **Less complex** → wider reach

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem \rightarrow computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex → wider reach
 - Effective Hamiltonian relies on experimental data

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex \rightarrow wider reach
 - Effective Hamiltonian relies on experimental data
- Quasiparticle Random-Phase Approximation (QRPA)

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex → wider reach
 - Effective Hamiltonian relies on experimental data
- ► Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex \rightarrow wider reach
 - Effective Hamiltonian relies on experimental data
- ► Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex \rightarrow wider reach
 - Effective Hamiltonian relies on experimental data
- ► Quasiparticle Random-Phase Approximation (QRPA)
 - Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...

- ► Ab initio methods (IMSRG, NCSM,...)
 - + Aim to solve Schrödinger equation (SE) for all nucleons and forces between them
 - VERY complex problem → computational limitations
- ► Nuclear Shell Model (NSM)
 - ► Solves the SE in valence space
 - + Less complex \rightarrow wider reach
 - Effective Hamiltonian relies on experimental data
- ► Quasiparticle Random-Phase Approximation (QRPA)
 - ► Describes nuclei as two-quasiparticle excitations
 - + Large model spaces, wide reach
 - Missing correlations, adjustable parameters,...
- ▶ ...

Current Status of $0\nu\beta\beta$ -Decay Experiments

$$\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

► Large-scale experiments: CUORE(Italy), GERDA(Italy), CUPID(Italy), MAJORANA(US), EXO-200(US), KamLAND-Zen(Japan),

...

J. Engel and J. Menéndez, Rep. Prog. Phys. **80**,046301 (2017)

Current Status of $0\nu\beta\beta$ -Decay Experiments

$$\boxed{\frac{1}{t_{1/2}^{0\nu}} = g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2}$$

- ► Large-scale experiments: CUORE(Italy), GERDA(Italy), CUPID(Italy), MAJORANA(US), EXO-200(US), KamLAND-Zen(Japan),
 - •••
- lacktriangle Currently, most stringent half-life limit $t_{1/2}^{0
 u}(^{136}\mathrm{Xe}) \geq 2.3 imes 10^{26}~y$

KamLAND-Zen Collaboration, arXiv:2203.02139 (2022)

J. Engel and J. Menéndez, Rep. Prog. Phys. **80**,046301 (2017)

Next-Generation Experiments

GOAL

Reaching the inverted-hierarchy region of neutrino masses

M. Agostini et al., Phys. Rev. C 104, L042501 (2021)

Next-Generation Experiments

GOAL

Reaching the inverted-hierarchy region of neutrino masses

M. Agostini et al., Phys. Rev. C 104, L042501 (2021)

Outline

Introduction

Improved Double-Beta-Decay Calculations

Other Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Ab Initio Muon-Capture Studies

Summar

$$[t_{1/2}^{0\nu}]^{-1} = g_{\rm A}^4 G_{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

► Contact term may enhance the NMEs by up to 80% in light nuclei

V. Cirigliano et al., PRC 100, 055504 (2019), PRL 120, 202001 (2018)

The Contact Term

V. Cirigliano et al., PRC 100, 055504 (2019)

$$[t_{1/2}^{0\nu}]^{-1} = g_{\rm A}^4 G_{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

► Contact term may enhance the NMEs by up to 80% in light nuclei

V. Cirigliano et al., PRC 100, 055504 (2019), PRL 120, 202001 (2018)

► ...and by 43(7)% in ⁴⁸Ca

M. Wirth, J. M. Yao and H. Hergert, Phys. Rev. Lett. 127, 242502 (2021)

The Contact Term

V. Cirigliano et al., PRC 100, 055504 (2019)

$$[t_{1/2}^{0\nu}]^{-1} = g_{\rm A}^4 G_{0\nu} |M_{\rm L}^{0\nu} + M_{\rm S}^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

► Contact term may enhance the NMEs by up to 80% in light nuclei

V. Cirigliano et al., PRC 100, 055504 (2019), PRL 120, 202001 (2018)

- ► ...and by 43(7)% in ⁴⁸Ca
 - M. Wirth, J. M. Yao and H. Hergert, Phys. Rev. Lett. 127, 242502 (2021)
- ► How about the heavier nuclei?

The Contact Term

V. Cirigliano et al., PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

$$h_{\rm S}(q^2) = 2 {f g}_{_{11}}^{
m NN} \, e^{-q^2/(2\Lambda^2)} \; .$$

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) \, q^2 \mathrm{d}q | 0_i^+ \rangle$$

Not known

$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} {\bf e}^{-q^2/(2\Lambda^2)} \; .$$

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 \mathrm{d}q | 0_i^+ \rangle$$

Not known

with
$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} {\bf e}^{-q^2/(2\Lambda^2)} \; . \label{eq:hs}$$

► Fix to lepton-number-violating data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

Not known

with

$$h_{\rm S}(q^2) = 2 {\rm g}_{\nu}^{\rm NN} {\rm e}^{-q^2/(2\Lambda^2)} \ .$$

► Fix to lepton-number-violating data

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 \mathrm{d}q | 0_i^+ \rangle$$

Not known

$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} {\bf d}^{-q^2/(2\Lambda^2)} \ .$$

- ► Fix to lepton-number-violating data
- ► Fix to synthetic few-body data

Discover:

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 \mathrm{d}q | 0_i^+ \rangle$$

Not known

$$h_{\rm S}(q^2) = 2g_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)}$$
.

- ► Fix to lepton-number-violating data
- ► Fix to synthetic few-body data

Discovery

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

Not known

$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)}$$
 .

- ► Fix to lepton-number-violating data
- ► Fix to synthetic few-body data
- ► Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

Not known

$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)} \ .$$

- ► Fix to lepton-number-violating data
- ► Fix to synthetic few-body data
- ► Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$M_{\rm S}^{0\nu} = \frac{2R}{\pi g_{\rm A}^2} \langle 0_f^+ | \sum_{m,n} \tau_m^- \tau_n^- \int j_0(qr) h_{\rm S}(q^2) q^2 dq | 0_i^+ \rangle$$

with

$$h_{\rm S}(q^2) = 2 {\bf g}_{\nu}^{\rm NN} e^{-q^2/(2\Lambda^2)}$$
.

Not known

- ► Fix to lepton-number-violating data
- ► Fix to synthetic few-body data
- ► Estimate by Charge-Independence-Breaking (CIB) term: $g_{\nu}^{\rm NN} \approx \frac{1}{2}(\mathcal{C}_1 + \mathcal{C}_2)$

Couplings $(g_{\nu}^{\rm NN})$ and scales (Λ) of the Gaussian regulator ¹.

$g_{\nu}^{\mathrm{NN}}(\mathrm{fm^2})$	Λ (MeV)
-0.67	450
-1.01	550
-1.44	465
-0.91	465
-1.44	349
-1.03	349

¹V. Cirigliano *et al.*, PRC 100, 055504 (2019)

$$\int C_{\rm L/S}(r) dr = M_{\rm L/S}^{0\nu} = \int \widetilde{C}_{\rm L/S}(q) dq$$

In pnQRPA:

 $M_{
m S}/M_{
m L}pprox 30-80\%$

In NSM:

 $M_{
m S}/M_{
m L}pprox 15-50\%$

LJ, P. Soriano and J. Menéndez, Phys. Lett. B **823**, 136720 (2021)

► Effective neutrino masses combining the likelihood functions ² of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe)

Effective Neutrino Masses

LJ, P. Soriano and J. Menéndez, Phys. Lett. B **823**, 136720 (2021)

► Effective neutrino masses combining the likelihood functions ² of GERDA (⁷⁶Ge), CUORE (¹³⁰Te), EXO-200 (¹³⁶Xe) and KamLAND-Zen (¹³⁶Xe)

lacktriangle Middle bands: $M_{
m L}^{0
u}$ Lower bands: $M_{
m L}^{0
u}+M_{
m S}^{0
u}$ Upper bands: $M_{
m L}^{0
u}-M_{
m S}^{0}$

Effective Neutrino Masses

LJ, P. Soriano and J. Menéndez, Phys. Lett. B **823**, 136720 (2021)

²S. D. Biller, Phys. Rev. D **104**, 012002 (2021)

Hadronic Two-Body Currents (2BCs)

► The effect of the two-body currents can be approximated by

$$\begin{cases} g_{\mathrm{A}}(p^2) \rightarrow g_{\mathrm{A}}(p^2) + \frac{\boldsymbol{\delta_a(p^2)}}{}, \\ g_{\mathrm{P}}(p^2) \rightarrow g_{\mathrm{P}}(p^2) - \frac{2m_{\mathrm{N}}}{p^2} \, \boldsymbol{\delta_a^P(p^2)} \end{cases}$$

M. Hoferichter, J. Menéndez and A. Schwenk, Phys. Rev. D 102, 074018 (2020)

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

Hadronic Two-Body Currents (2BCs)

► The effect of the two-body currents can be approximated by

$$\begin{cases} g_{\mathrm{A}}(p^2) \rightarrow g_{\mathrm{A}}(p^2) + \boldsymbol{\delta_a(p^2)}, \\ g_{\mathrm{P}}(p^2) \rightarrow g_{\mathrm{P}}(p^2) - \frac{2m_{\mathrm{N}}}{p^2} \, \boldsymbol{\delta_a^P(p^2)} \end{cases}$$

M. Hoferichter, J. Menéndez and A. Schwenk, Phys. Rev. D 102, 074018 (2020)

▶ 2BCs reduce $0\nu\beta\beta$ -decay NMEs by some 25 - 45%

arXiv:2207 05108

Outline

Introduction

Improved Double-Beta-Decay Calculations

Other Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Ab Initio Muon-Capture Studies

Summar

Probing $0\nu\beta\beta$ -Decay by Charge-Exchange Reactions

► Charge-exchange reactions (strong interaction) can probe the $0\nu\beta\beta$ decay (weak interaction)

H. Ejiri, LJ, J. Suhonen, Phys. Rev. C **105**, L022501 (2022)

Probing $0\nu\beta\beta$ -Decay by Charge-Exchange Reactions

- ► Charge-exchange reactions (strong interaction) can probe the $0\nu\beta\beta$ decay (weak interaction)
- Ground-state-to-ground-state double charge-exchange reactions would probe 0νββ-decay NMEs

$M^{0 u}$ Correlated with $M_{ m DGT}$ - or Is It?

$$M_{\mathrm{DGT}} = (0_{\mathrm{gs,f}}^{+}||\sum_{j,k} [\boldsymbol{\sigma}_{j}\tau_{j}^{-} \times \boldsymbol{\sigma}_{k}\tau_{k}^{-}]^{0}||0_{\mathrm{gs,i}}^{+})$$

▶ Linear correlation between double Gamow-Teller (DGT) and $0\nu\beta\beta$ in NSM, EDF

N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. **120**, 142502 (2018), and IBM-2

F. F. Deppisch *et al.*, Phys. Rev. D **102**, 095016 (2020), J. Barea *et al.*, Phys. Rev. C **91**, 034304 (2015)

Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. **120**, 142502 (2018)

$M^{0\nu}$ Correlated with M_{DGT} - or Is It?

$$M_{\mathrm{DGT}} = (0_{\mathrm{gs,f}}^{+}||\sum_{j,k} [\boldsymbol{\sigma}_{j}\tau_{j}^{-} \times \boldsymbol{\sigma}_{k}\tau_{k}^{-}]^{0}||0_{\mathrm{gs,i}}^{+})$$

► Linear correlation between double Gamow-Teller (DGT) and $0\nu\beta\beta$ in NSM, EDF

N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. **120**, 142502 (2018), and IBM-2

F. F. Deppisch *et al.*, Phys. Rev. D **102**, 095016 (2020), J. Barea *et al.*, Phys. Rev. C **91**, 034304 (2015)

 Correlation can also be found in ab initio frameworks

J. M. Yao et al., Phys. Rev. C 106, 014315 (2022)

$M^{0\nu}$ Correlated with M_{DGT} - or Is It?

$$M_{\mathrm{DGT}} = (0_{\mathrm{gs,f}}^+ || \sum_{j,k} [\boldsymbol{\sigma}_j \tau_j^- \times \boldsymbol{\sigma}_k \tau_k^-]^0 || 0_{\mathrm{gs,i}}^+)$$

► Linear correlation between double Gamow-Teller (DGT) and $0\nu\beta\beta$ in NSM, EDF

N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. **120**, 142502 (2018), and IBM-2

F. F. Deppisch *et al.*, Phys. Rev. D **102**, 095016 (2020), J. Barea *et al.*, Phys. Rev. C **91**, 034304 (2015)

 Correlation can also be found in ab initio frameworks

J. M. Yao et al., Phys. Rev. C 106, 014315 (2022)

► See A. Belley's talk!

$M^{0\nu}$ Correlated with $M_{\rm DGT}$ - or Is It?

$$M_{\mathrm{DGT}} = (0_{\mathrm{gs,f}}^+ || \sum_{j,k} [\boldsymbol{\sigma}_j \tau_j^- \times \boldsymbol{\sigma}_k \tau_k^-]^0 || 0_{\mathrm{gs,i}}^+)$$

▶ Linear correlation between double Gamow-Teller (DGT) and $0\nu\beta\beta$ in NSM, EDF

N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. 120, 142502 (2018). and IBM-2

F. F. Deppisch et al., Phys. Rev. D 102, 095016 (2020), J. Barea et al., Phys. Rev. C 91. 034304 (2015)

 Correlation can also be found in ab initio frameworks

J. M. Yao et al., Phys. Rev. C 106, 014315 (2022)

- See A. Bellev's talk!
- But not in QRPA (Why?)

Phys. Rev. C 106, 014315 (2022)

Radial Densities of $M^{0\nu}$ and $M_{\rm DGT}$

$$M_{\rm L}^{0\nu} = \int_0^\infty C^{0\nu}(r) dr ,$$

$$M_{\rm DGT} = \int_0^\infty C_{\rm DGT}(r) dr$$

► $M_{\rm DGT}$ more sensitive to proton-neutron pairing $(g_{\rm DD})$ than $M^{0\nu}$

LJ, J. Menéndez, in preparation

Radial Densities of $M^{0\nu}$ and $M_{\rm DGT}$

$$M_{\rm L}^{0\nu} = \int_0^\infty C^{0\nu}(r) dr ,$$

$$M_{\rm DGT} = \int_0^\infty C_{\rm DGT}(r) dr$$

- ► $M_{\rm DGT}$ more sensitive to proton-neutron pairing $(g_{\rm DD})$ than $M^{0\nu}$
- ▶ Decreasing g_{pp} makes DGT more short-ranged (like $0\nu\beta\beta$ decay)

LJ, J. Menéndez, in preparation

Radial Densities of $M^{0\nu}$ and $M_{\rm DGT}$

$$M_{\rm L}^{0\nu} = \int_0^\infty C^{0\nu}(r) dr ,$$

$$M_{\rm DGT} = \int_0^\infty C_{\rm DGT}(r) dr$$

- ► $M_{\rm DGT}$ more sensitive to proton-neutron pairing $(g_{\rm DD})$ than $M^{0\nu}$
- ▶ Decreasing $g_{\rm pp}$ makes DGT more short-ranged (like $0\nu\beta\beta$ decay)
- ▶ What if we free the value of g_{pp} ?

LJ, J. Menéndez, in preparation

▶ By varying $g_{pp}^{T=0}$ we observe a correlation in QRPA

- ▶ By varying $g_{pp}^{T=0}$ we observe a correlation in QRPA
- ► Correlation different from other models

- ▶ By varying $g_{pp}^{T=0}$ we observe a correlation in QRPA
- Correlation different from other models
 - ► Maybe not surprising, given the dispersion of $M^{0\nu}$'s...

- ▶ By varying $g_{pp}^{T=0}$ we observe a correlation in QRPA
- ► Correlation different from other models
 - ► Maybe not surprising, given the dispersion of $M^{0\nu}$'s...
 - ...and different approaches (closure/non-closure,...)

- ▶ By varying $g_{pp}^{T=0}$ we observe a correlation in QRPA
- ► Correlation different from other models
 - Maybe not surprising, given the dispersion of $M^{0\nu}$'s...
 - ...and different approaches (closure/non-closure,...)
- ► Measuring DGT reaction could help constrain $M^{0\nu}$!

Probing $0\nu\beta\beta$ Decay by Gamma Decays

▶ Double magnetic dipole (M1) decay (electromagnetic interaction) can be related to $0\nu\beta\beta$ decay (weak interaction)

$$M^{\gamma\gamma}(M1M1) = \sum_{n} \frac{(0_{\rm f}^{+}||\mathbf{M_1}||1_n^{+})(1_n^{+}||\mathbf{M_1}||0_i^{+})}{E_n - (E_i + E_f)/2}$$

 $\mathbf{M_1} = \mu_N \sqrt{\frac{3}{4\pi}} \sum_{i=1}^{A} (g_i^l \boldsymbol{\ell}_i + g_i^s \mathbf{s}_i)$

Probing $0\nu\beta\beta$ **Decay by Gamma Decays**

- ▶ Double magnetic dipole (M1) decay (electromagnetic interaction) can be related to $0\nu\beta\beta$ decay (weak interaction)
- Correlation between these processes observed in NSM

B. Romeo, J. Menéndez, C. Peña-Garay, Phys. Lett. B **827**, 136965 (2022)

B. Romeo, J. Menéndez, C. Peña-Garay, Phys. Lett. B **827**, 136965 (2022)

Probing $0\nu\beta\beta$ Decay by Gamma Decays

- Double magnetic dipole (M1) decay (electromagnetic interaction) can be related to 0νββ decay (weak interaction)
- ► Correlation between these processes observed in NSM
 - B. Romeo, J. Menéndez, C. Peña-Garay, Phys. Lett. B **827**, 136965 (2022)
- ▶ Correlation also found in QRPA

LJ, J. Menéndez, in preparation

► How about $2\nu\beta\beta$ decay?

- ► How about $2\nu\beta\beta$ decay?
- ▶ $2\nu\beta\beta$ -decay also correlated with $0\nu\beta\beta$ -decay!

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

- ▶ How about $2\nu\beta\beta$ decay?
- ▶ $2\nu\beta\beta$ -decay also correlated with $0\nu\beta\beta$ -decay!
- ▶ We can use the existing data to estimate $0\nu\beta\beta$ -decay NMEs!

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

Two-Body Currents & Contact Term

► Correlations survive when adding the 2BCs and the contact term

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

Two-Body Currents & Contact Term

- ► Correlations survive when adding the 2BCs and the contact term
- ► Effect of 2BCs larger than in previous studies

J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

Two-Body Currents & Contact Term

- ► Correlations survive when adding the 2BCs and the contact term
- ► Effect of 2BCs larger than in previous studies

J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

J. Engel, F. Šimkovic, P. Vogel, Phys. Rev. C 89, 064308 (2014)

► 2BCs and the contact term largely cancel each other

LJ, B. Romeo, P. Soriano and J. Menéndez, arXiv:2207.05108

Outline

Introduction

Improved Double-Beta-Decay Calculations

Other Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Ab Initio Muon-Capture Studies

Summar

MONUMENT (OMC4DBD)

$$\mu^- +_Z^A X(J_i^{\pi_i}) \to \nu_\mu +_{Z-1}^A Y(J_f^{\pi_f})$$

MONUMENT (OMC4DBD)

$$\mu^- +_Z^A X(J_i^{\pi_i}) \to \nu_\mu +_{Z-1}^A Y(J_f^{\pi_f})$$

• Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$

MONUMENT (OMC4DBD)

$$\mu^- +_Z^A X(J_i^{\pi_i}) \to \nu_\mu +_{Z-1}^A Y(J_f^{\pi_f})$$

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- ► Large m_{μ} allows transitions to all J^{π} states up to high energies

MONUMENT (OMC4DBD)

$$\mu^- +_Z^A X(J_i^{\pi_i}) \to \nu_\mu +_{Z-1}^A Y(J_f^{\pi_f})$$

- ▶ Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- ▶ Large m_{μ} allows transitions to all J^{π} states up to high energies
- ▶ Both the axial vector coupling g_A and the pseudoscalar coupling g_P involved g_A

MONUMENT (OMC4DBD)

$$\mu^- +_Z^A X(J_i^{\pi_i}) \to \nu_\mu +_{Z-1}^A Y(J_f^{\pi_f})$$

- Weak interaction process with momentum transfer $q \approx 100 \text{ MeV}/c^2$
- ▶ Large m_{μ} allows transitions to all J^{π} states up to high energies
- \blacktriangleright Both the axial vector coupling $g_{\rm A}$ and the pseudoscalar coupling $g_{\rm P}$ involved $g_{\rm P}$
 - \rightarrow Similar to $0\nu\beta\beta$ decay!

$g_{\rm A}$ Quenching at High Momentum Exchange?

Recently, first ab initio solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

$g_{\rm A}$ Quenching at High Momentum Exchange?

Recently, first ab initio solution to g_A
 quenching puzzle was proposed for
 β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

► How about g_A quenching at high momentum transfer $q \approx 100$ MeV/c?

$g_{\rm A}$ Quenching at High Momentum Exchange?

Recently, first ab initio solution to g_A quenching puzzle was proposed for β-decay

P. Gysbers et al., Nature Phys. 15, 428 (2019)

- ► How about $g_{\rm A}$ quenching at high momentum transfer $q \approx 100$ MeV/c?
 - ► OMC could provide a hint!

Muon-Capture Theory

► Interaction Hamiltonian → capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |g_{\rm V} M_{\rm V} + g_{\rm A} M_{\rm A} + g_{\rm P} M_{\rm P}|^2$$

PHYSICAL REVIEW

VOLUME 118, NUMBER 2

APRIL 15, 1960

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

MASATO MORITA Columbia University, New York, New York

AND

AKIHIKO FUJII†

Brookhaven National Laboratory, Upton, Long Island, New York

(Received November 9, 1959)

Muon-Capture Theory

► Interaction Hamiltonian → capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |g_{\rm V} M_{\rm V} + g_{\rm A} M_{\rm A} + g_{\rm P} M_{\rm P}|^2$$

PHYSICAL REVIEW

VOLUME 118, NUMBER 2

APRIL 15, 1960

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

MASATO MORITA Columbia University, New York, New York

AND

AKIHIKO FUJII†

Brookhaven National Laboratory, Upton, Long Island, New York

(Received November 9, 1959)

► Use realistic bound-muon wave functions

Muon-Capture Theory

► Interaction Hamiltonian → capture rate:

$$W(J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_\mu + AM} \right) q^2 \sum_{\kappa u} |g_{\rm V} M_{\rm V} + g_{\rm A} M_{\rm A} + g_{\rm P} M_{\rm P}|^2$$

PHYSICAL REVIEW

VOLUME 118, NUMBER 2

APRIL 15, 1960

Theory of Allowed and Forbidden Transitions in Muon Capture Reactions*

MASATO MORITA Columbia University, New York, New York

AND

AKIHIKO FUJII†

Brookhaven National Laboratory, Upton, Long Island, New York

(Received November 9, 1959)

- ► Use realistic bound-muon wave functions
- ► Add the effect of two-body currents

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

► Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction (in this case)

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- ► Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction (in this case)
- ➤ VS Hamiltonian and OMC operators decoupled from complimentary space with a unitary transformation

Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG)

- ► Hamiltonian based on the chiral EFT with EM 1.8/2.0 interaction (in this case)
- ➤ VS Hamiltonian and OMC operators decoupled from complimentary space with a unitary transformation
 - Operators can be made consistent with the Hamiltonian!

 $Sum(2^+)$

Capture Rates on Low-Lying States in ²⁴Na

	V5-IM5RG + Two-Body Currents + Realistic Muon wave Function					
J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ³	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
11+	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_2^+	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\overline{Sum}(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2^{+}_{2}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9

LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992

4.1

3.2

1.5

1.2

 20.9 ± 2.6

³P. Gorringe et al., Phys. Rev. C **60**, 055501 (1999)

Capture Rates on Low-Lying States in ²⁴Na

	VS-IMSRG + Two-Body Currents + Realistic Muon Wave Function					
J_i^{π}	E_{exp} (MeV)	Rate (10 ³ 1/s)				
		Exp. ³	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
1_{1}^{+}	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_2^+	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\overline{Sum}(1^+)$		38.5 ± 8.9 (36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_{2}^{+}	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992

► Generally, IMSRG gives smaller capture rates

³P. Gorringe *et al.*, Phys. Rev. C **60**, 055501 (1999)

Capture Rates on Low-Lying States in ²⁴Na

	VS-IMSRG + Two-Body Currents + Realistic Muon Wave Function					
J_i^{π}	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)				
		Exp. ³	NSM		IMSRG	
			1bc	1bc+2bc	1bc	1bc+2bc
11+	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2
1_2^+	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9
$\overline{Sum}(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3
2_2^+	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2

LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992

- ► Generally, IMSRG gives smaller capture rates
- ► 1⁺ states mixed

³P. Gorringe *et al.*, Phys. Rev. C **60**, 055501 (1999)

Capture Rates on Low-Lying States in ²⁴Na

	VS-IMSRG + Two-Body Currents + Realistic Muon Wave Function						
$\overline{J_i^\pi}$	$E_{ m exp}$ (MeV)	Rate (10 ³ 1/s)					
		Exp. ³	NSM		IMSRG		
			1bc	1bc+2bc	1bc	1bc+2bc	
$\frac{-1_{1}^{+}}{1_{1}^{-}}$	0.472	(21.0 ± 6.6)	4.0	3.0	22.3	15.2	
1_2^+	1.347	17.5 ± 2.3	32.7	21.3	7.7	4.9	
$Sum(1^+)$		38.5 ± 8.9	36.7	24.5	30.0	20.0	
2_{1}^{+}	0.563	17.5 ± 2.1	1.0	0.7	0.5	0.3	
2_2^+	1.341	3.4 ± 0.5	3.1	2.5	1.0	0.9	
$Sum(2^+)$		20.9 ± 2.6	4.1	3.2	1.5	1.2	

LJ, T. Miyagi, S.R. Stroberg, J.D. Holt, J. Kotila and J. Suhonen, arXiv:2111.12992

- ► Generally, IMSRG gives smaller capture rates
- ► 1⁺ states mixed
- ► Agreement with experiment hopefully gets better with new data from MONUMENT

Discovery,

³P. Gorringe *et al.*, Phys. Rev. C **60**, 055501 (1999)

No-Core Shell Model (NCSM)

► Basis expansion method

No-Core Shell Model (NCSM)

- Basis expansion method
 - ► Harmonic oscillator (HO) basis truncated with $N_{\rm max}$

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

No-Core Shell Model (NCSM)

- Basis expansion method
 - ► Harmonic oscillator (HO) basis truncated with $N_{\rm max}$
 - → For more details, see P. Gysbers' talk!

 $2\rightarrow 2$

No-Core Shell Model (NCSM)

- ► Basis expansion method
 - ► Harmonic oscillator (HO) basis truncated with N_{max}
 - → For more details, see P. Gysbers' talk!
- ► Hamiltonian based on the chiral EFT with N4LO EM500 Inl interaction (in this case)

Figure courtesy of P. Navrátil

₹TRIUMF

Capture Rates to Low-Lying States in ¹²B

 N_{max}

0.2

LJ, P. Navrátil, work in progress

Two-body currents?
Transition invariance?
Continuum?

Outline

Introduction

Improved Double-Beta-Decay Calculations

Other Nuclear Observables as Probes of Neutrinoless Double-Beta Decay

Ab Initio Muon-Capture Studies

Summary

Summary

- ▶ Reliable nuclear matrix elements crucial for $0\nu\beta\beta$ studies
- Adding a new short-range term enhances the NMEs notably
- ▶ On the other hand, adding the effect of two-body currents reduce the NMEs
- ► Related nuclear observables, such charge-exchange reactions, $\gamma\gamma$ decays and $2\nu\beta\beta$ decays, can help constrain the $0\nu\beta\beta$ -decay NMEs
- \blacktriangleright Ab initio muon capture calculations could shed light on $g_{\rm A}$ quenching at finite momentum exchange regime

Thank you Merci

The Extreme Cases: 100 Mo and 48 Ca

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

The Extreme Cases: 100 Mo and 48 Ca

LJ, P. Soriano and J. Menéndez, Phys. Lett. B 823, 136720 (2021)

Unexpectedly Large $M_{ m S}/M_{ m L}$ in $^{100}{ m Mo}$

%TRIUMF_→

Obtaining Majorana Bound from experiments

$$\Gamma^{0\nu} = \log(2)g_{\rm A}^4 G_{0\nu} |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

- ► Input: log(likelihood) functions from experiments
- $ightharpoonup \Gamma^{0\nu}
 ightharpoonup m_{\beta\beta}$ with our NMEs
- ightharpoonup 90% CI Bayesian bounds for $m_{\beta\beta}$ from 90% CI upper bounds on combined Γ_{20}^{000}

J^{π} Decomposition of $M^{0 u}$ of $^{76}{ m Ge}$

²¹R. A. Sen'kov, M. Horoi, Phys. Rev. C **90**, 051301(R) (2014)

► Excitations $|J_k^{\pi}M\rangle = \sum_{pn} (X_{pn}^{J_k^{\pi}} A_{pn}^{\dagger}(JM) - Y_{pn}^{J_k^{\pi}} \tilde{A}_{pn}(JM)) |QRPA\rangle^9$

39/34

- Excitations $|J_k^{\pi}M\rangle = \sum_m (X_{ph}^{J_k^{\pi}} A_{pn}^{\dagger}(JM) Y_{ph}^{J_k^{\pi}} \tilde{A}_{pn}(JM)) |QRPA\rangle$ 9
- ► ...obtained from pnQRPA equation:

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} = E_{\omega} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} ,$$

$$A_{pn,p'n'}(J) = (E_p + E_n) \delta_{pp'} \delta_{nn'} + (u_p u_n u_{p'} u_{n'} + v_p v_n v_{p'} v_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle + (u_p v_n u_{p'} v_{n'} + v_p u_n v_{p'} u_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle ,$$

$$B_{pn,p'n'}(J) = - (u_p u_n v_{p'} v_{n'} + v_p v_n u_{p'} u_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle + (u_p v_n v_{p'} u_{n'} + v_p u_n u_{p'} v_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle$$

⁹J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (2007)

- Excitations $|J_k^{\pi}M\rangle = \sum_{m} (X_{pn}^{J_k^{\pi}} A_{pn}^{\dagger}(JM) Y_{pn}^{J_k^{\pi}} \tilde{A}_{pn}(JM)) |QRPA\rangle^9$
- ► ...obtained from pnQRPA equation:

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} = E_{\omega} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} ,$$

$$A_{pn,p'n'}(J) = (E_p + E_n) \delta_{pp'} \delta_{nn'}$$

$$+ (u_p u_n u_{p'} u_{n'} + v_p v_n v_{p'} v_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle$$

$$+ (u_p v_n u_{p'} v_{n'} + v_p u_n v_{p'} u_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle ,$$

$$B_{pn,p'n'}(J) = - (u_p u_n v_{p'} v_{n'} + v_p v_n u_{p'} u_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle$$

$$+ (u_p v_n v_{p'} u_{n'} + v_p u_n u_{p'} v_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle$$

solved from BCS equations

⁹J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (2007)

- ► Excitations $|J_k^{\pi}M\rangle = \sum_{m} (X_{pn}^{J_k^{\pi}} A_{pn}^{\dagger}(JM) Y_{pn}^{J_k^{\pi}} \tilde{A}_{pn}(JM)) |QRPA\rangle^9$
- ► ...obtained from pnQRPA equation:

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} = E_{\omega} \begin{pmatrix} X^{\omega} \\ Y^{\omega} \end{pmatrix} ,$$

$$A_{pn,p'n'}(J) = (E_p + E_n) \delta_{pp'} \delta_{nn'}$$

$$+ (u_p u_n u_{p'} u_{n'} + v_p v_n v_{p'} v_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle$$

$$+ (u_p v_n u_{p'} v_{n'} + v_p u_n v_{p'} u_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle ,$$

$$B_{pn,p'n'}(J) = - (u_p u_n v_{p'} v_{n'} + v_p v_n u_{p'} u_{n'}) \times g_{pp} \langle pn; J | V | p'n'; J \rangle$$

$$+ (u_p v_n v_{p'} u_{n'} + v_p u_n u_{p'} v_{n'}) \times g_{ph} \langle pn^{-1}; J | V' | p'n'^{-1}; J \rangle$$

solved from BCS equations

39/34

adjustable parameters

⁹J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (2007)

Technical Note: g_{pp} -Problem of pnQRPA

▶ It is hard to simultaneously reproduce experimental $2\nu\beta\beta$. EC and β^- data

Technical Note: g_{pp} -Problem of pnQRPA

$$[t_{1/2}^{2\nu}]^{-1} = g_{\mathcal{A}}^4 G_{2\nu} |M^{2\nu}|^2$$
$$\log f t_{\mathcal{E}\mathcal{C}/\beta} = \log_{10}(3\kappa/(g_{\mathcal{A}}^2 |M_{\mathcal{E}\mathcal{C}/\beta}|^2))$$

- It is hard to simultaneously reproduce experimental $2\nu\beta\beta$. EC and β^- data
 - ► Often small values of $g_{\rm pp}$ AND quenched $q_{\scriptscriptstyle A}^{\rm eff} \ll 1.27$ needed

Technical Note: g_{pp} -Problem of pnQRPA

$$t_{1/2}^{2\nu}]^{-1} = g_{\mathcal{A}}^4 G_{2\nu} |M^{2\nu}|^2$$

$$\log f t_{\mathrm{EC}/\beta} = \log_{10}(3\kappa/(g_{\mathrm{A}}^2|M_{\mathrm{EC}/\beta}|^2))$$

- ► It is hard to simultaneously reproduce experimental $2\nu\beta\beta$, EC and β^- data
 - ▶ Often small values of g_{pp} AND quenched $q_{\Lambda}^{eff} \ll 1.27$ needed
- ▶ Usually, $g_{\rm pp}$ adjusted to observed $2\nu\beta\beta$ decays with $g_{\Lambda}^{\rm free}=1.27$ or $g_{\Lambda}^{\rm eff}=1.0$

Partial Isospin Restoration Scheme

$$\begin{split} g_{\mathrm{pp}}\langle pn;J|V|p'n';J\rangle &\to \ g_{\mathrm{pp}}^{T=0}\langle pn;J,T=0|V|p'n';J,T=0\rangle + \\ &+ g_{\mathrm{pp}}^{T=1}\langle pn;J,T=1|V|p'n';J,T=1\rangle \end{split}$$

- $g_{\rm pp}^{T=1}$ adjusted to $M_{\rm F}^{2\nu}=0$ to restore isospin
- $g_{\rm pp}^{T=0}$ then usually adjusted to $M_{\rm exp}^{2\nu}$ with $g_{\rm A}=1.27$ or $g_{\rm A}^{\rm eff}=1.0$

- ► Negative contributions in pnQRPA can make Mpgt small
 - ► In NSM, normally no (strong) cancellation
- ► It is possible to force $M_{DGT} = 0$ by adjusting proton-neutron pairing (g_{DD})
 - ▶ What if we free the value of g_{pp} ?

$M_{ m DGT}$ in pnQRPA

F. Šimkovic, A. Smetana, P. Vogel, Phys. Rev. C **98**.064325 (2018)

Muon-Capture Experiments

► Mostly total capture rates measured

LJ, J. Suhonen, H. Ejiri, I.H. Hashim, Phys. Lett. B **794**, 143 (2019)

Muon-Capture Experiments

- Mostly total capture rates measured
- OMC strength spectrum in ¹⁰⁰Mo was first measured at RCNP. Osaka

LJ, J. Suhonen, H. Ejiri, I.H. Hashim, Phys. Lett. B 794, 143 (2019)

LJ, J. Suhonen, H. Ejiri, I.H. Hashim, Phys. Lett. B **794**, 143 (2019)

Muon-Capture Experiments

- ► Mostly total capture rates measured
- ► OMC strength spectrum in ¹⁰⁰Mo was first measured at RCNP, Osaka

LJ, J. Suhonen, H. Ejiri, I.H. Hashim, Phys. Lett. B 794, 143 (2019)

 Experiments extended to daughter nuclei of ββ triplets by MONUMENT (a.k.a. OMC4DBD) collaboration at PSI, Switzerland

MONUMENT Collaboration