

Cosmic Rays: Particles from Outer Space

High energy charged particles, originating in outer space

- Mostly nuclei of atoms
 - 85% proton, 12% helium, 2% heavy nuclei, 1% leptons at 109 eV
- Spectrum follows a smooth power-law distribution over wide energy range

More than a hundred years old questions...

- What is the origin of cosmic rays?
- How do they get their energies?
- How do they propagate to us?

Difficulties

- Bending in the magnetic field
- Lots of interaction in their way to Earth

Source of Galactic Cosmic Rays?

Cosmic Rays with energies up to 1015eV (1 PeV)

Gamma-rays are generated by both <u>leptons & hadrons!</u>

VHE neutrino are generated only by hadrons!

Detection of High Energy Astro Particles

Detection of High Energy Astro Particles

<u>VERITAS</u>

- Located at 1.3 km a.s.l.
- 4 telescopes, each with 12 m optical reflector with a camera w/ 499 PMTs
- 100 GeV upto >30 TeV

- Located at 4.1km a.s.l.
- 300 water tanks
- 100 GeV upto >30 TeV

Imaging Atmospheric Cherenkov Telescope

- IceTop: Surface veto array
- In-Ice array :1.45 km below the South Pole
- A cubic kilometer active volume
- 86 strings with optical module (total 5160 optical modules
- threshold : ~ 100 TeV

Background dominated measurements!!

Multi-messenger High Energy Astrophysics

To accelerate particles to the energies of cosmic rays we observed on Earth, we need much more extreme environments than our Sun

- In our Galaxy: Supernova remnants, pulsar, pulsar wind nebulae, nova, binaries, Galactic center, microquasar jet interactions, ...
- Outside our Galaxy: Supermassive black holes (blazars, radio galaxies), starburst galaxies, gamma-ray bursts,....

Observation of multiple messengers from the Universe provide the most direct way of studying the high-energy(HE) particle dynamics in our Universe

- Cosmic-ray observations provide energies and compositions of HE particles.
- HE gamma-ray observations provide the direct measurements of HE particles accelerators for both leptonic + hadronic particles.
- HE neutrino observations provide the direct measurements of HE particle accelerators for hadronic particles. Can probe larger portion of the Universe than HE gamma-rays.

Multi-messenger High-energy Astrophysics (2)

Neutrino events in a direction of a flaring blazar, TXS 0506+056

- Extremely high-energy through-going track alert of IceCube (IC170922A) triggered multi-messenger observations for TXS 0506+056
 - Detection of GeV/TeV gamma-ray flaring of the blazar (3σ chance of coincidence)

• (Potentially) first direct detection of hadronic accelerator for E> 1 PeV (10¹⁵ eV)

2500

3000

125m

- Significantly increasing the total energy emitted by this object
- Excluding pure leptonic model
- Current models generally agree on disfavoring pure hadronic models
- Setting stringent constraints on Lorentz Invariance Violation

Multi-messenger High-energy Astrophysics for GW events

GW170817-GRB 170817A event

- Neutron star-neutron star merger>>short gamma-ray burst
 - Detection of gravitational wave followed by EM/neutrino observations (detection up to a few hundreds of keV energy range)
- No gamma-ray observed (> MeV)

Gravitational wave followup observations

Gamma-ray observations

- IACT observations: limited by uptime and small field of view
 - Automatic tiling observations are currently used.
 - ~ 10 events were followed. No detection.
- Air shower array observations: limited by low energy sensitivity

Neutrino observations

- All GW events are followed by IceCube
 - No detection
 - Larger amount of background due to the large GW position uncertainty

Future Multimessenger observations in LISA era

Can these environments accelerate particles to high energy?

- Acceleration mechanism?
- Nature of acceleration?
- Detection of HE particles would provide direct evidence for the accelerations of these particles
 - Information of environment (magnetic field, relativistic shock, environment density, radiation density,...)
 - Information on the energetics of the system
- Neutrino observation is particularly good at probing opaque systems that are not reachable by EM waves

Testing fundamental physics (LIVs,)

Future gamma-ray observatories

VHE gamma-ray observatories

- Cherenkov Telescope Array Observatory (CTAO)
 - Two sites (Chile @ South, La Palma@ North), larger telescope array (50 telescopes @ South, 13 telescopes @ North)
 - ~ 10 times better sensitivity than the current generation
 - Site preparation is ongoing, aiming to start construction in 2023
- Large air shower arrays
 - LHAASO @ North, potentially SWGO @ South

Future Neutrino Telescopes

()

IceCube is still operating well (10+ years)

Next generation neutrino telescopes under construction & in-design

- Larger detector area
- Higher light collection efficiency
- Better angular resolution

P-ONE neutrino telescope

New neutrino telescope planning to be build at Cascadia Basin

- Utilizing the existing infrastructure of ONC (Ocean Networks Canada)
- Final goal is a 70 string detector w/ active volume of few cubic kilometer
- Pathfinders deployed and taking data
- Planning to submit a funding proposal for demonstrator

