Theoretical Nuclear Astrophysics and Gravitational Waves

%TRIUMF

Nicole Vassh
TRIUMF Theory Group

LISA Canada Workshop, August 25, 2022

65 years of Nuclear Astrophysics: Multiple nucleosynthesis sites enriched the solar system

65 years of Nuclear Astrophysics:

How many processes? What are their astrophysical sites?

65 years of Nuclear Astrophysics:

Observables depend on the properties of exotic nuclei

65 years of Nuclear Astrophysics:

Observables depend on the properties of exotic nuclei

Binary neutron star merger GW170817 & "red" / "blue" kilonovae

Spectra and light curves depend on the species present; Lanthanide and/or actinide mass fraction \uparrow , opacity \uparrow , longer duration light curve shifted toward infrared

Model

Binary neutron star merger GW170817 & "red" / "blue" kilonovae

Spectra and light curves depend on the species present; Lanthanide and/or actinide mass fraction \uparrow , opacity \uparrow , longer duration light curve shifted toward infrared

Actinides in mergers? Spotlight on nuclear fission in astrophysics

Actinides in mergers? Spotlight on nuclear fission in astrophysics

Zhu+18 (including Vassh)(ApJ Letters)

Another messenger from NSMs: MeV gamma rays from fission

Wang, Vassh+20 (ApJ Letters 903, L3) using GEF inputs from Vassh+19 (J. Phys. G 46, 065202)

NS merger dynamical ejecta: dependence on the NS EOS

NSM simulations with EOS variations by Radice+19 found:

- * Stiff EOSs such as BHB $\Lambda\phi$ and DD2 typically have less tidally dominated ejecta than softer EOSs such as LS220 and SFHo
- * Softer EOSs eject more mass overall

Nucleosynthesis Predictions

Abundance range of dynamical ejecta from 10 mass models

Nucleosynthesis Predictions

Abundance range of dynamical ejecta from 10 mass models

Nucleosynthesis Predictions

Abundance range of dynamical ejecta from 10 mass models

Previous analysis considered Eu only, now extended to all *r*-process dominated elements

Models / mass ejection combos that require a higher LIGO rate implies the need for additional astrophysical sources

Models / mass ejection combos that require a lower LIGO rate can be ruled out

Côté, Vassh+22 (in prep)

Opportunities for progress in nuclear astrophysics

Worldwide experimental campaigns to measure the properties of neutron-rich nuclei:

 $NSCLT_{1/2}P_n$

Opportunities for progress in nuclear astrophysics

Worldwide experimental campaigns to measure the properties of neutron-rich nuclei:

masses, half-lives, reaction rates...

Developments in nuclear theory:

 $NSCL T_{1/2} P_n$

GSI ESR

Ring: Mass

Jyvaskyla

Trap: Mass

TRIUMF Trap: Mass

Structure theory (masses, deformation...), reaction theory (capture cross sections...), fission yields and rates, and β -decay rates....

N=82

CERN/ISOLDE Trap: Mass

RIKEN T_{1/2}

ANL Trap: Mass

CERN/ISOLDE

Horowitz+18

GSI

FRIB Reach

 $T_{1/2} P_n$

future

How do current gravitational wave detections inform this picture?

Some thoughts:

- NS merger rates as a function of cosmic time with advanced groundbased detectors (Cosmic Explorer)
- Supermassive BH merger rates inform galaxy evolution sims (insights on star formation) (LISA)
- Insights on WDWD merger rate(LISA) (WD+WD = SN1a progenitor?Informs Fe production in GCE sims)

Thank you! Merci!

%TRIUMF

Nicole Vassh
TRIUMF Theory Group

LISA Canada Workshop, August 25, 2022