Hg and Xe Comagnetometry

U Winnipeg: J. Martin, M. Lang

UBC: T. Momose, K. Madison, D.Jones, E. Altiere, E. Miller

Purpose

Phase 1: <u>Hg</u> Comagnetometer

Calculate the **volume-and time-averaged** magnetic field \mathbf{B}_0 from Hg precession frequency

$$\frac{\nu_n}{\nu_{Hg}} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| + \frac{(d_n + |\gamma_n/\gamma_{Hg}| d_{Hg})}{\nu_{Hg}} E = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| + \frac{d_{meas}}{\nu_{Hg}} E.$$

Phase 2: <u>Hg-Xe Dual</u>

Calculate volume-and time-averaged magnetic field and vertical gradient dB/dz (GPE)

Implementation:

- Optical probe beam
- Record ~100s of Free Spin Precession
- Fit average precession frequency
- ILL & PSI: Fit a decaying sinusoid to the first and last 15s of the precession signal

$$\sigma_f \approx \frac{1}{4T'} \frac{a_n}{a_s} \frac{1}{\sqrt{n}} (1 + e^{2T'/\tau})^{1/2}$$

	В	$\sigma_B=rac{2\pi}{\gamma}\sigma_f$
ILL, typical (Baker et. al, 2014)	1 μΤ	50 fT (50ppb)
Target (2015CDR)	1 μΤ	30 fT (30ppb)
Target (CFI 2017) 100s in 1mTorr	1 μΤ	10 fT (10ppb)

Hg Comagnetometry

Laser

- 254 nm CW laser (OPSL +SHG)
 - Mode hop –free tuning range
 2 GHz
 - UV power > 10mW
 - Compare to lamp pumping: e.g PSI lamp 20μW (10¹³ photon/s) over all emission lines
 - 5-15 min stability of cavity locks
 - Wavelength stabilized by feedback signal from wavemeter

Equipment

Hg vapour cell w/ quartz windows

3-axis magnetic coil

Solar blind PMT detector (R10454)

Bristol 671-NIR wavemeter

Hg Cell filling

- At room temperature, Hg is optically thick:
 - $\sigma_{Hg} = 8x10^{-13} \text{ cm}^2$
 - $n_{Hg}^{1/8} = 6.4 \times 10^{13} \text{ cm}^{-3}$
- Hg fill procedure:
 - pump lines 30 min to < .001 Torr
 - open Hg for 30s
 - close reservoir
 - Leave pump valve open
 ~30s to pump below
 saturation vapour pressure
 - Trial and error!
- Need: controlled fill system
 - Heating HgO or cooling Hg

Progress towards Optical Pumping

- 1. Filled cell w/ 10^{12} ~ 10^{13} Hg atoms
- 2. Applied 800 μ T B₀ (nulled off-axis fields < 10 μ T)
- 3. Confirmed ¹⁹⁹Hg resonance frequency via spectra: (peaks above but no below.
- 4. Pump beam: 10 μW & 2 cm diameter, circularly polarized

No OP signal yet!

We suspect wall collisions

Hg $6s^2(^1S_0)$ - $6s6p(^3P_1)$ @ 253.7nm

Some approximate rates for optical pumping:

UV photon flux (10 μW)	10 ¹³ s ⁻¹	
Integrated ¹⁹⁹ Hg pumping rate	1.6x10 ¹² s ⁻¹	At $n_{Hg} = 2.8 \times 10^{10} \text{ cm}^{-3}$
Hg thermal velocity, 300K	160 m/s	
Wall collisions, uncoated? (est. Loss per bounce = 10 ⁻³)		For cell ID = 2cm For cell ID = 20cm
Wall collisions, coated (est. Loss per bounce = 10 ⁻⁵)		For cell ID = 2cm For cell ID = 20cm

Next steps

Hg work:

- Reduce wall collision loss rate
 - Increase cell size to reduce frequency of wall collisions
 - Coat cell with Surfasil or paraffin to reduce loss probability per bounce
- Increase pumping light intensity up to I_{sat}
- Build controlled Hg fill system
- We will begin testing a 507nm diode laser to replace the OPSL/LBO

studied coatings Coating material and its chemical structure τ_1 (s) τ_2 (s) Perfluorinated paraffin 40.5 (1.2) 34.6 (6) $C_{20}F_{42}(80 \%) + C_{16}F_{34} (10-20 \%)$ Fomblin grease 34.7 (7) 30.6 (5) $CF_3-[-O-CF_2-CF_2]_n-[O-CF_2]_m-O-CF_3$ mixed with CF2-CF2 SurfaSil 32.2 (4) 30.6 (7) $Cl-[-(CH_3)_2-Si-O-]_n-(CH_3)_2-Si-Cl$ Paraffin 26.3 (4) 28.0 (2) C32H66 Fomblin oil type "Y" 28.4 (5) 27.0 (6) $CF_3 - [-O - CF_2 - CF_2]_n - [O - CF_2]_m - O - CF_3$ n/m = 20...40AquaSil 23.0 (1.0) 26.0 (6) CH3-(CH2)15-Si-(OH)3 Black Teflon <5 CF2-CF2 mixed with carbon Apiezon "J" oil No signal – based on hydrocarbons

Table 1 Measured τ -times (first measurement τ_1 , second τ_2) for

Nichia NDE4116E 507nm diode

Xe Comagnetometry

Xe Two-photon Spectroscopy

Pressure dependence

- Some evidence for a pressure-independent signal over 1-10 Torr
- Similar behavior is expected down to 130mTorr
- Current work:
 - Measure pressure broadening over 20 mTorr 1 Torr
 - Extrapolate to zero pressure to get the natural linewidth of the $5p^5(^2P_{3/2})6p^2[3/2]_2$ state (natural linewidth = 4MHz expected)

Extrapolation of measurement uncertainty $\sigma_f \approx \frac{1}{4T'} \frac{a_n}{a_s} \frac{1}{\sqrt{n}} (1 + e^{2T'/\tau})^{1/2}$

Conditions	Assumed P _{Xe}	Laser Power (W)	SNR	σ _B (fT)
1.6 Torr nat. abund. Xe/O ₂	50%	.228	2.5	4000
1.6 Torr isopure ¹²⁹ Xe	50%	.228	19.5	500
130 mTorr isopure ¹²⁹ Xe	50%	.228	19.5	500
10mTorr isopure ¹²⁹ Xe	50%	.228	1.5	6700

- The first row represents achieved pressure and laser conditions
- Following rows consider the change in number density and pressure broadening
- Assuming 100% isopure ¹²⁹Xe
- We should increase SNR using a cooled PMT.

Retro-reflection Setup

Retro-reflection TPA LIF Signal

Next steps: requirements?

- what is needed for implementation?
 - UV laser windows
 - Gas inlet valve
 - Prepolarizing cell
 - Photodetector & electronics
- e.g. will there be two HgOP cells for the dual EDM cells?

Thank You!