

EDM cell and HV test setup

Florian Kuchler TRIUMF

Aug 8th 2018 - TUCAN collaboration meeting

1

Requirements – EDM cell

	First guess figure	Comments
Insulator/Coating resistivity	> 10 ¹⁸ Ohm cm	False EDM
Electrode-insulator leak	< 10 ⁻⁷ mbar*l/s	Comagnetometer sensitivity ~10-100 fT; Contamination?
EDM cell vacuum	< 10 ⁻⁶ mbar	Contamination – Comag sensitivity, EDM sensitivity
E-field magnitude	~200kV	EDM sensitivity - E
E-field ramping speed	~50s?	EDM sensitivity - N
E-field uniformity	>99%	Electrode conductivity (thin conductive layer, non-metallic) Electrode deformation < 0.5mm? Electrode (top-ground-bottom) alignment 0.1-1°? Comag/UCN inlets, UV windows
EDM cell alignment to B-field	~ 0.01-1°?	False EDM
E-field magnitudes for opposite polarities	<1%?	False EDM
EDM cell height	< 15cm 🛛 🏹	EDM sensitivity – UCN counts, E-field
EDM cell diameter	> 18cm	EDM sensitivity – UCN counts
UCN storage	> 130 s	EDM sensitivity - τ
UCN polarization lifetime	> 500s	EDM sensitivity - τ
HV compatible coatings	Preserve lifetimes to ~% over 200 days?	EDM sensitivity - τ
Electrode surface	Smooth?	Reduce sparks, non-symmetric for opposite polarities
Hg/Xe polarization lifetime	> 500s	Comagnetometer sensitivity ~10-100fT?
UV windows	> 98%?	Comagnetometer sensitivity ~10-100fT?
Non-magnetic/non-magnetizable materials	< pT (at ~cm distance)	Permanent magnetic dipoles
Non-metallic materials	Johnson noise, induced currents ~fT	Magn. field gradients, magn background <10ft?

High voltage power supply

- (First) quote (Heinzinger, Sept 2016):
 - Cost: EUR 50k
 - Current: 0 1mA
 - Voltage range: 0 200kV (e
 - Stability:
 - Ripple:
 - Polarity switch:

- 0 200kV (eg 13 kV/cm at 15cm) < 10⁻⁵ (8h)
- < 10⁻⁵ pp (+/- 50 mV)
- only mechanical, 180° rotation evaluated options with PSI, two high voltage supplies are more economical

- Other suppliers: Gamma, FUG, ...
- 200kV feedthrough (MSR, vacuum chamber)

High voltage breakdown tests

Motivation

- 199 Hg/ 129 Xe dual comagnetometer allows for B₀ and dB_{0Z}/dz determination
 - ¹²⁹Xe precession in same direction as neutrons
 - ¹²⁹Xe has 100 times smaller neutron absorption cross-section compared to ¹⁹⁹Hg
 - HV breakdown data for xenon pressures btw 1e-4mbar to 1e-2mbar

	n	¹⁹⁹ Hg	¹²⁹ Xe
γ/2π [Hz/μT]	-29.16	7.65	-11.77
UCN capture σ [barns]		2150	21

• Also: HV test of materials, coatings...

Since last collaboration meeting

- Leak test of axially sealed EDM cell
- Machining of radially sealing split electrodes
- Gas filling system had high permeation through O-ring seals
 - ➔ Newly built using metal seals
- Improved DAQ system
 - ➔ New DAQ box
 - ➔ Software

High voltage test setup at TRIUMF

Suppy -125kV

1GOhm resistor

at voltages up to

breakdown/trips

100kV

Glass:

PE:

Feedthrough 100kV

Routinely operating

Tested insulators without

22 kV/cm

10.5 kV/cm

High voltage test setup at TRIUMF

Screw sets applied force to the top electrode

Load cell to measure force on electrodes

HV feedthrough

- Not specially treated PE cylinder
- HV ramps of 100kV/10 min

High voltage test setup – Sealing the cell

Radial seal

- easier centering of the insulator ring
- no force on glass-metal surface (vs axial seal)
- implementation in EDM setup easier
- electrodes machined, ready for testing?

High voltage test setup – Radial seal tests

Electric field simulations:

• no significant issues due to split electrode design

First simulations of screws and hole show no significant electric field issues

-> careful design to minimize effects

Tested the radial sealing method

Configuration	Leak Rate (atm-cc/s)
Plastic Cylinder	>1e-4
Steel Cylinder	6e-7
Glass Cylinder	<1.3e-9

High voltage test setup – HV cell leak check

- Precisely machined glass insulator rings for axial seal
- Set up leak test inside vacuum chamber

Leak rates at different load cell settings

- ➔ find load cell force threshold?
- ➔ test reproducability and stability
- determine helium leak rate vacuum chamber) for axially sealed HV cell

Run	Load cell setting [kg]	Load cell final [kg]	Helium pressure [Torr]
1	64.8	> 215	50
2	47.2	116	50
3	55	130	50
4	62.1	156	50
5a	62.1	154	100
5b	62.1	154	25
6	60.6	160	50
7	63.0	183	50

High voltage test setup – Gas filling

<u>Idea:</u> batch-filling HV cell volume from prefilling volume of 1-10 Torr

High voltage test setup – Gas filling installed

High voltage test setup – Planning first tests

Breakdown voltage (Paschen law)
$$V_{\rm b} = \frac{Bpd}{\ln Apd - \ln \left[\ln \left(1 + 1/\gamma_{\rm se} \right) \right]}$$

- A saturation ionization in the gas for particular E/p
- B related to excitation and ionization energies
- γ_{SE} number of secondary electrodes emitted per incident positive ion (depends also on electrode material)

Gas	$(\mathrm{cm}^{-1} \mathrm{Torr}^{-1})$	$B (V \text{ cm}^{-1} \text{ Torr}^{-1})$	Range of E/p (V cm ⁻¹ Torr ⁻¹)
Не	2.8	77	30-250
Ne	4.4	111	100 - 400
Ar	11.5	176	100-600
Kr	15.6	220	100 - 1000
Xe	24	330	200-800
H_2	4.8	136	15-600
N_2	11.8	325	100-600
O_2	6.5	190	50-130
$\overline{CH_4}$	17	300	150-1000
CF ₄	11	213	25-200

Source: Fits to data supplied by Petrović and Marić (2004).

Lieberman, Principles of plasma discharges and materials processing, Wiley (2005)

Validity of experimentally determined A,B:	10-1000 V/(cm*torr)
Neutron EDM cell (10 kV/cm, 1e-2 Torr)	10 ⁶ V/cm/Torr)

High voltage test setup – Planning first tests

Expected breakdown in nitrogen Electrode distance 6.5cm Axially sealed cell

Pressure [Torr]	p*d [Torr*cm]	Breakdown [V]
0.015	0.1	?
0.031	0.2	?
0.046	0.3	?
0.061	0.4	?
0.077	0.5	~700
0.092	0.6	~300
0.15	1	~200
0.31	2	~200
0.77	5	~300
1.5	10	~600
15	100	~4000
77	500	~10000

Summary

- Many HV/EDM cell requirements to be figured out!
 - many depending on other subsystems, mainly magnetic fields
- HV test setup getting ready for first HV breakdown tests with gas (N_2 , He, Xe,...)
 - Ready for first tests
 - Need to fix leak for low pressure tests
- Produce and test coatings (dPS,...)
- Look into low-conductivity (eg. coated) electrodes
- Merge HV testing with comagnetometer development?

Backup slides

Baseline design of the measurement cell?

High voltage breakdown of xenon (and others)

-> evaluate E-field breakdown properties for xenon in pressure range:

p = 0.1 to 10 mTorr for various distances 2-10 cm (equal to 0.2 - 100 mTorr*cm)

- -> extend to gas mixtures of xenon and mercury
- -> high voltage compatibility of potential EDM cell materials/geometries