

Superconducting Magnet Warm Bore

Wolfgang Schreyer

Requirements

- 1. Wall Fermi potential 212neV (NiP), polished surface
- 2. Min. 85mm warm bore
- 3. Polarization-conserving downstream of magnet
- 4. Leak rate to He vapor < 10⁻⁷ mbar l/s (from guide vacuum, magnet vacuum, upstream flange)
- 5. Foil exchangeable (without moving shielding, impact on room-temperature source guides?)
- 6. Foil should withstand pressure difference of 100mbar(?), bypass for higher pressures
- 7. Foil Fermi potential < 54neV (AI, thin Ti/PE would not necessarily be part of SCM)
- 8. Bakeable?
- 9. Transmission?

Superconducting Magnet from RCNP

Connection to the 1st and 2nd stage of the pulse tube cryocooler.

Superconducting Magnet from RCNP

- High-temperature superconductor (20K)
- 105mm ID cold bore
- Thermal-shield temp. 60K
- ~35h for cooldown
- Max. field on axis 3.75 T (226 neV)

Triple-foil cold bore at RCNP

Concept for warm bore

- UCN guide: 88.9mm OD
- 8mm radial clearance
- Thermal contraction:
 - Cold bore + thermal shield move up < 2mm
 - Minimal relative movement between cold bore and shield

Concept for warm bore

Requirements

- 1. Polished SS, NiP-plated ✓ (will NiP survive welding?)
- 2. 84.7 mm warm bore ✓
- Non-depolarizing NiP plating
- Vacuum-vacuum leak rate likely very small, upstream flange will need metal seals X
- 5. Space required to pull out ~420mm guide tube
- 6. Pressure tests, calculated burst pressure 8psi (550mbar)
- 7. Al6061 foil, 0.1mm (less?) 🗸
- 8. Probably bakeable ✓
- 9. Transmission > 80%

Plan for fall run

August:

Pressure tests with unpolished tube

September:

- Cut two sets of prepolished tubes One for additional polishing One for polishing + plating
- Cold test with unpolished tube piece

October:

- Machine + weld polished tube
- Machine plated tube, test welding

• November:

- Measure leak rate/transmission/storage lifetime
- Polarization measurements?

Upgrade for metal seal

- One end with CF flange
- Bore can only be removed from upstream side

Future use

DEPOL-style experiments?

- Measure depolarization on wall bounce
- Fill Partially close trap Clean Fully close trap – Store – Open trap
- Superconducting magnet ramp time?
 (I = 200A, L = 1H)

Thank you!