Automated Purification of Polarized Xe for Comagnetometry

Michael Lang TUCAN Collaboration Meeting Aug 8, 2018

Canada's national laboratory for particle and nuclear physics

The TUCAN nEDM Experiment

- Search for charge-parity violation within/beyond standard model
- Neutron electric dipole moment (nEDM) with goal precision of <10⁻²⁷ e.cm (Starting 2020)
- Precision measurement of neutron precession frequency
- Newly developed, high-density spallation Ultra-Cold Neutron Source

The nEDM Experiment

Required B-field precision ~10 fT

Purpose of the Comagnetometer

- Measure Larmor precession of another species within UCN cell
- Measure magnetic field to ~10 fT in 100s
- Proposed dual species (¹⁹⁹Hg/¹²⁹Xe) comagnetometer
- Xe comagnetometer requires mTorr pressure of pure, highly polarized Xe in the nEDM cell

Comagnetometer Production and Delivery

Polarized Xe Production and Purification

Rev. Mod. Phys., Vol. 69, No. 2, April 1997

Hersman et al. Academic Radiology, Vol 15, No 6, June 2008

Our SEOP system uses a gas mixture of 1% Xe, 3% N₂, and 96% He

Requirements for Purification System

Freezeout Cell: Sufficient surface area for thin deposition of condensed Xe during purification by freezeout

<u>Magnetic Field</u>: Sufficiently strong to prevent rapid depolarization of condensed Xe during freezeout/recovery

Xe Recovery: Rapid sublimation to reduce time spent in Xe solid phase, especially near the triple point

Xe Gas Handling: Non-magnetic materials that preserve Xe polarization

Freezeout Cell

The TUCAN experiment requires 1 - 10 mTorr pure Xe pressure in ~33 litre volume \rightarrow 0.033 - 0.33 Torr*litres Xe

- Design based on 99.8% recovery in [1] where 45 cm² of surface area per Torr*litre of Xe was used
- Xe condensing area ~200 cm²
- Suitable for at least ~4.4 Torr*litres of Xe accumulation
- Single purification run could supply over 100 nEDM runs worth of Xe

Initial production

Design

Final cell with modifications

Note: 4.4 Torr*litres is 55 Torr in 80 ml cold trap

[1] Hersman et al. Academic Radiology, Vol 15, No 6, June 2008

Halbach Array for Xe Purification B-Field

← Completed Halbach array

- Total size is 10"length x 10"width x 8" height
- 3.5" diameter central bore
- 72, 1" cube N52 magnets
- 6 layers of 12 magnets in K = 2 Halbach ring configuration

Field Mapping the Halbach Array

Mapping layout

Mapping points

- Hall probe with 5 μ T resolution used for field measurements
- Locations are the center of the bore, and 8 points located ~20 mm radially from the center at 45 degree increments
- Each field profile starts and ends ~25mm outside of each end of the bore

Halbach Array Field Map

Solid Xe Sublimation Temperature and Spin Relaxation

Phys. Rev. B, 2(8), 3323

11

Xe Recovery

• Heated air used to evacuate LN2 from cold trap and sublimate frozen Xe in < 50 s

Inline heater with airline provides ample supply of hot air at pressure up to 80 PSI High temperature valves are actuated electronically to control heated air flow

Polarized Xe Gas Handling

International Polymer Solutions (IPS) P/N MTV-442CFS-T

- 1/4" FNPT & 0.250" Orifice
- 2-Way Normally Closed
- PTFE Valve Seat
- Pneumatically Actuated

Automation, Control, and Monitoring

- python System controlled via python code on local PC
- Arduino microcontroller receives commands from the PC and engages electronic and pneumatic valves through relays

Arduino and relay boards

 Pressure monitored with Baratron capacitance manometer

• Thermocouples monitor cold trap temperature

• Flow meter monitors Xe gas mixture flow rate

Compressed air gas panel

Experimental Setup

Acquire 1% Xe mixture signal:

1) Flow Xe gas mixture through entire system (Polarizer, cold trap, NMR cell)

Acquire 1% Xe mixture signal:

1) Flow Xe gas mixture through entire system (SEOP, cold trap, NMR cell)

2) Close pneumatic valves around NMR cell to trap gas

Acquire 1% Xe mixture signal:

- 1) Flow Xe gas mixture through entire system (SEOP, cold trap, NMR cell)
- 2) Close pneumatic valves around NMR cell to trap gas
- 3) Acquire NMR signal

1) Fill cold trap dewar with LN2 while flowing Xe gas mixture

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow
- 3) Stop Xe gas mixture flow and pump on cold trap & NMR cell to remove buffer gas

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow
- 3) Stop Xe gas mixture flow then pump down cold trap to remove buffer gas
- 4) Close cold trap valves and heat to sublimate frozen Xe

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow
- 3) Stop Xe gas mixture flow then pump down cold trap to remove buffer gas
- 4) Heat cold trap to sublimate frozen Xe
- 5) Expand cold trap contents into NMR cell

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow
- 3) Stop Xe gas mixture flow then pump down cold trap to remove buffer gas
- 4) Heat cold trap to sublimate frozen Xe
- 5) Expand cold trap contents into NMR cell
- 6) Trap Xe in NMR cell

- 1) Fill cold trap dewar with LN2 while flowing Xe gas mixture
- 2) Hold LN2 while continuing Xe gas mixture flow
- 3) Stop Xe gas mixture flow then pump down cold trap to remove buffer gas
- 4) Heat cold trap to sublimate frozen Xe
- 5) Expand cold trap contents into NMR cell
- 6) Trap Xe in NMR cell
- 7) Acquire NMR signal

Xe purification run

- Stop Xe flow and pump cold trap 3)
- Expand cold trap contents into NMR cell 6)
 - Trap Xe and perform AFP sequence

Cool down inline heater and end sequence

 Discrepancy in signal/pressure could be due to gas temperature and flow rates

Next steps:

- Build T-Slot frame for the purification system \rightarrow Stand alone apparatus
- Perform more rigorous testing and characterisation
- Investigate transportation of Xe \rightarrow are guide fields necessary?
- Use RGA to check purity of Xe
- Ship system to UBC for testing with Xe spectroscopy and 2-photon LIF

Thank you!