

Moderator and shielding layout for the new UCN source

Wolfgang Schreyer

Moderator optimization for next-generation UCN source

Goal

- Maximize UCN density in nEDM cell $\rho = \frac{P\tau}{V}$
- Neglects transport losses (independent of moderator geometry)
- $\tau^{-1} = \tau_{\text{He}}^{-1} + \tau_{\text{wall}}^{-1} + \tau_{\beta}^{-1}$
- $V = V_{\rm src} + V_{\rm guide} + V_{\rm nEDM}$
- $\tau_{\text{He}} \sim Q^{-1}$, if V constant ρ approximately proportional to $\frac{P}{Q}$

UCN production P

Simulated with MCNP

- Detailed target model
- Secondary neutrons, gammas, electrons
- UCN production cross sections [1], [2]

Heat load Q

Prompt + decay heating

- MCNP energy-deposition tallies
- Heat removed by 2m-long, 15cm-wide channel through 4He-3He heat exchanger

$$\tau_{\rm He}^{-1} = 0.008 \ \frac{1}{sK^7} \ T^7$$

- Gorter-Mellink + vanSciver/HePak
- Kapitza resistance with $k_G = 20 40$

•
$$\tau_{\text{He}} = 500 \sim 1500 \text{ s} \cdot \left(\frac{Q}{1 W}\right)^{-1.5 \sim -1.0}$$

Initial basic geometry

Optimized individual layer thicknesses
 with constant He-II volume

Multidimensional optimization

- More realistic geometry
 - Added UCN guide
 - All vessels Al6061
 - Thermal shields and vacuum vessels
 - Wall thicknesses from first stress calcs
- Full optimization of all layers, including He-II volume
- Optimized for wide range of assumptions

Parameter	Range
$ au_{ m wall}$	$60 \mathrm{\ s} - 100 \mathrm{\ s}$
$ au_eta$	$880 \mathrm{\ s}$
B	$500 { m s} - 1500 { m s}$
a	-1.51.0
$V_{\rm guides} + V_{\rm EDM}$	$100 \ {\rm L} - 200 \ {\rm L}$

Results

Volume (L)			
UCN converter (w/o guide)	34.2		
Liquid deuterium	125		
Heavy water	804		
UCN production (s^{-1})	$21.5\cdot 10^6$		
Max. heat load (W)			
UCN converter	4.4		
Converter vessel	5.2		
Converter total	9.6		
Liquid deuterium	21		
Deuterium vessel	17		
Deuterium total	38		
Heavy water	320		
Heavy-water vessel	36		
Vacuum separator	7.8		
Thermal shield	13		
Vacuum vessel	14		
Heat exchanger	0.072		
$^{3}\mathrm{He}$	0.024		
Tritium production (MBq/d)			
Liquid deuterium	330		
Heavy water	828		
³ He	29		

 After 8 months of operation at 40 µA and 25% duty cycle

Studied variatons

- Converter vessel materials
 - Pure beryllium best
 - BeAI and MgAI alloys good
- Liquid deuterium
 - Density/temperature changes UCN density <5%
 - Effect of para-deuterium max. -7%
 - -4% per 1% hydrogen (commercial purity >99.8%)
- VCN guide (5x5 cm²) penetrating D₂O has no effect
- Bi neutron filter
 - +25% UCN density
 - +200% heat load at 20K
 - x10 activation
- Optimization for other cold moderators
 - Solid D₂O: -60% UCN density
 - Liquid hydrogen: -66% UCN density

Important parameters and recommendations

Improvement	Estimated increase in UCN density in EDM cell
Beryllium converter vessel	100~%
AlBeMet or AZ80 converter vessel	30%-50%
Thinner converter vessel	25~% per millimeter
Increased LD_2 volume	$5~\%~{\rm per}~15~{\rm L}$
Thinner vacuum separator/ LD_2 vessel	5~% per millimeter
Thinner thermal shield/ D_2O vessel	2.5~% per millimeter
Reduced spacing around converter	5~% per centimeter

- Geometry robust against ~1cm changes in moderator thicknesses
- Best improvements:
 - Use alternative materials for He-II bottle
 - Minimize wall thicknesses and spacings
 - Increase LD₂ volume
- Design note has been released on <u>TRIUMF Docushare</u> and <u>Plone</u>

Radiation shielding for next-generation UCN source

Requirements

- < 0.5 µSv/h in uncontrolled highoccupancy areas (counting rooms)
- < 10 µSv/h in uncontrolled lowoccupancy areas (exp. area, walkways)
- < 100 µSv/h in controlled low-occupancy areas (M11 area?)
- Quick access to cryostat through tunnel, while beamline 1A operating
- < 65 µSv/h for maintenance at cryostat lid

Shielding concept

Custom steel shielding around moderators & cryostat

Shielding concept

Fluka simulation model

12

Fluka simulation results – UCN target irradiated

Fluka simulation results

Nominal operation

UCN target irradiated with 40 µA

- Exp. area, walkways, counting rooms safe
- M11 area up to 50 µSv/h (is exclusion area)
- T1 target irradiated with 140 μ A
 - Cryostat pit safe < 5 µSv/h

Accidental beam losses

- Max. allowed beam (140 µA in 1A, 40 µA in 1U) dumped into beam pipe
- All simulated scenarios contained with slight modification of BL1A shielding (exclude access tunnel at floor level)
- Compared with empirical Moyer model

						Dose	(mSv/h)
Loss at	Dose at a	l(m)	θ (°)	$t_{\rm conc}$ (m)	$t_{\rm iron}~({\rm m})$	Moyer	Fluka
BL1A #1	#6	6.9	73	3.8	0	41	20 ± 2
BL1A $#4$	#6	6.6	90	3.6	0	28	-
BL1A $\#2$	#7	6.3	58	4.3	0	35	2 ± 0.2
BL1A $\#3$	#7	6.2	100	2.2	0.8	11	0.2 ± 0.2
BL1U $\#1$	#6	6.6	45	4.6	0	9.2	100 ± 3
BL1U $\#4$	#6	5.5	74	3.6	0	28	-
BL1U $\#2$	#7	4.9	60	3.6	0	78	20 ± 1
BL1U $\#5$	#7	3.9	74	2.37	0	1050	-
BL1U $\#3$	#7	3.7	90	2.2	0	720	10 ± 3

Dose in cryostat pit

Prompt dose

Dose absorbed by H/C/N/O/F compounds

- Max. 10 Gy/h (@2)
- 1-2 Gy/h (@1,5)
- <0.2 Gy/h (@3,4)

Residual dose Dose rate after 28d (uSv/h)

Residual dose at cryostat lid <65 µSv/h (1 day after shutdown)

100 μ Sv @0.5m from guide (after 4weeks)

Status

Shielding concept

- Can probably fulfill all requirements
- Design note ready for formal review
- Detailed design will follow
 - Exact size of cryostat pit?
 - Maximize experimental area
 - Minimize shine from shield penetrations
- How to control access to cryostat?
 - Procedural or engineered lockout?
 - Confined space
 - Access while cold? Oxygen deprivation!

Moderator optimization

- Finished, design note released [1] [2]
- Reduce reflectors to improve shielding?
- Continue to implement changes during detailed design

℀TRIUMF

Thank you!

Wolfgang Schreyer