UCN Data with the Vertical Source

Taraneh Andalib
TUCAN Collaboration Meeting
August, 07 2018

Prototype UCN Source

- Vertical UCN source from Japan
- Shipped to TRIUMF in 2016
- Installation and first cooling (2017 Spring)
- First UCN production (2017 Nov-Dec)

Overall UCN Experiments

UCN Yield: vs beam current

vs irradiation time and beam current

vs temperature

vs time

UCN Storage Liftime: vs beam current

vs temperature

vs time

Wolfgang Schreyer: Comparison

with PENTrack simulations

Steve Sidhu: UCN guide

transmission

Steady-State UCN

Production: vs temperature

for proton beam vs heater power calibration

- UCN Guide transmission
- Pinhole Storage Lifetime (In progress)

UCN Cycle of Measurement

UCN Counts Measurements

UCN Counts Estimation

UCN Counts = UCN detected by the detector during valve open time – Background counts

Background counts = (UCN background rate before the irradiation) * (valve open time)

UCN Counts vs Temperature

• Increase in temperature -> Increase in upscattering rate -> lower UCN counts

UCN Counts vs Beam Current

- 60 s target irradiation
- Full range of all temperature sensors
- Higher beam currents increases heat load and isopure temperature

UCN Counts at Different Irradiation Times and Beam Current

 Higher beam current and longer irradiation times -> higher isopure temperature

Storage Lifetime Measurement

Storage Lifetime Estimation

- UCN rate at different valve open delay times 0 s to 170 s
- 1muA, 60 s irradiation time

Exponential fit to the data (to 120 s)

-> Storage lifetime

Storage Lifetime vs Beam Current And Irradiation Times

Higher beam currents and longer irradiation times decrease the storage lifetime in the source (Higher isopure helium temperature and higher upscattering rate)

Storage Lifetime vs Temperature

Higher isopure helium temperature -> Higher upscattering rate of UCN -> shorter storage lifetimes

$$1/\tau = 1/\tau_{up} + 1/\tau_{ab} + 1/\tau_{\beta} + 1/\tau_{W}$$

$$1/\tau_{up} = BT^7$$
 See Wolfgang's talk

Storage Lifetime over Time

Daily standard storage lifetime measurement of 1muA and 60 s irradiation time

~ 30% decrease over 2 weeks Source contamination?

UCN Counts over Time

Standard measurement of **1 muA** beam current and **60 s** target irradiation time over the course of UCN experimental run

Decrease because of contamination and different experimental configuration

Steady-State UCN Production

Steady-State UCN Production

- UCN valve is left open

Target irradiation for 10 min

- 0.3 muA beam current

- Data taken at higher beam currents (3muA)

UCN-rate Histogram

Is it consistent with BT^7 ?? See Wolfgang's talk

Proton Beam vs Heater power

Problems:

- Did not wait long enough between the cycles for temperature and He3 flow rate stabilization
- Cryostat autofill was running -> Change in He3 flow rate, cooling power and isopure helium temperature
- Did not irradiate the target long enough for temperature and He3 flow rate to reach a stable value

Example of a Problem Run

- Isopure Temperature stabalized but the He3 flow rate did not
- Did not wait long enough before starting the run so that the temperature and flow rate are low and stable

Final Points

- Storage lifetime decreased from 37 s to 27 s over 2 weeks period
- Maximum UCN counts of 325k at 10 muA beam current
- Maximum UCN counts of 40 k at 1muA beam current
- Steady state UCN rate of 1600 UCN/s*muA
- Would be good to understand isopure temperatures (which sensor is right?)
- Do not take data while running helium autofill if interested in He3 flow rate
- Wait long enough between the cycles to let the cryostat go back to the stable state

Thank You!