Static heat load

R. Matsumiya August 7, TUCAN Collaboration Meeting 2018 in UBC campus

μ-Intro

- · Heat load into He-II of the new UCN source
 - · γ -heating and β -heating during p-beam irradiation 10 W at 20kW p-beam
 - · Static heat load thermal conduction and radiation ← Today's topic

Heat path

4 heat paths:

- (1) Helium vapor (Thermal conduction)
- (2) UCN guide (Thermal conduction)
- (3) Radiation (from downstream and 10K shield)
- (4) Spacers
- (5) Film flow?

Thermal conduction - Fourier's law

If we know the integral of conductivity, dT/dx is not needed.

(Data of the integral of conductivity from HEPAK and P. Duthil, arXiv:1501.07100)

(1) Thermal conduction - ⁴He gas

Case 1: $T_{gas}=10K$ at point (3), 1.2K at point (4)

$$\dot{Q}(3\rightarrow 4) = (A/L) \int_{1.2}^{10} k dT = 5.4 \text{ mW}$$

(Good heat exchange between ⁴He gas & guide)

Case 2: T_{gas}=300K at point (1), 1.2K at point (4), unknown at (2) & (3)

$$\dot{Q}(1\rightarrow 4) = (A/L')\int_{1.2}^{300}k\mathrm{d}T = 233~\mathrm{mW}$$
 (No heat exchange between ⁴He gas & guide)

(2) Thermal conduction - Guide

UCN guide ID=100mm, OD=102mm (1mmt)

Heat load from point (3) to (4) via guide

$$\dot{Q}(3\rightarrow 4) = (A/L)\int_{1.2}^{10}kdT = 10 \text{ mW}$$
 goes to He-II

Heat load from point (2) to (3) via guide

$$\dot{Q}(2\rightarrow 3) = (A/L')\int_{10}^{80} k dT = 218 \text{ mW}$$
 goes to HEX4

Heat load from point (1) to (2) via guide

$$\dot{Q}(1 \rightarrow 2) = (A/L'') \int_{80}^{300} k dT = 2.52 \text{ W}$$
 goes to HEX5

Region	T [K]	ε	Reflection	
I	1.2	0.1	Mirror	← He-II
II	4	0.1	Mirror	
III	10	0.1	Mirror	← 10K anchor
IV	20	0.1	Mirror	TOR difficility
V	40	0.1	Mirror	
VI	60	0.1	Mirror	
VII	80	0.1	Mirror	← 80K anchor
VIII	170	0.1	Mirror	
IX	250	0.1	Mirror	
Х	300	0.1	Mirror	✓ Vacuum chamber
ΧI	300	0.1	Mirror	UCN valve (open:
XII	300	0.1	Mirror	no facet here)
XIII	300	0.1	Mirror	
XIV	300	0.1	Mirror	← foil

- (1) Default: 536 mW
- (2) $\varepsilon = 0.2$ for all the surfaces: 304 mW
- (3) $\varepsilon = 0.05$ for all the surfaces: 663 mW
- (4) Region I $\varepsilon = 1 \& \text{mirror: } 544 \text{ mW}$
- (5) Region I $\varepsilon = 1$ & diffuse: 537 mW Black UCN bottle
- (6) Diffuse for all the surfaces: 13.7 mW (unlikely)

UCN valve closed: set XV to T=300K, $\varepsilon=0.1$, Mirror

- (7) $\varepsilon = 0.1$ for all the surfaces: 419 mW
- (8) $\varepsilon = 0.2$ for all the surfaces: 245 mW
- (9) $\varepsilon = 0.05$ for all the surfaces: 476 mW
 - Smaller emissivity leads to larger radiation into He-II
 - UCN bottle status (i.e. He-II emissivity) doesn't change radiation
 - Closing UCN valve reduces radiation (smaller solid angle between 1.2K region and 300K region)

(3) Radiation - from 10K shield to He-II

$$q = \left(\frac{\varepsilon}{(n+1)(2-\varepsilon)}\right)\sigma(T_1^4 - T_2^4)$$

Shield temperature [K]	Emissivity ε (guide) = ε (shield)	Number of SI layer n	Heat load [mW]
10	1	0	1.2
20	1	0	20
10	0.1	0	0.065
20	0.1	0	1.1
10	0.1	3 (ε=0.1)	0.016
20	0.1	3 (ε=0.1)	0.26

(4) Spacers

- 10 spacers around UCN guide, and 7 spacers around UCN bottle
- Use G10 or G11 (this calculation used G10)

Spacer x7

Gap btw UCN bottle and

10K shield (vacuum separator) is 15mm.

Heat load via spacers around UCN guide: 0.42 mW/each

Heat load via spacers around UCN bottle: 0.76 mW/each

Total: 0.42 mW/each x10 + 0.76 mW/each x7 = 9.5 mW

Summary

	Heat load into He-II	Note	V source
Conduction via Helium gas	5.4 mW ($T_{gas} = T_{guide}$) 233 mW ($T_{gas} \neq T_{guide}$)	UCN guide D=10cm (4inch)	31.1~50.3 mW
Conduction via UCN guide	l IO mW		1.57~20.3 mW
Radiation	304~663 mW from downstream 0.016~20mW from 10K shield	Emissivity of NiP coating?	23.7~113? mW large dependence on emissivity
Spacer	9.5 mW (G10 rods)	0.42mW/spacer (around UCN guide) 0.76mW/spacer (around UCN bottle) G11 may be better	(Not taken into account - assuming very small)
Film flow?	???		
Total 329 ~ 936 mW			56~184 mW * 53 mW heat load during isopure helium recovery

- Radiation from the downstream region is pretty large.
- Lengthen cold part of the UCN guide?
- Study effect of film flow.