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Singular Hypersurfaces and Thin Shells in General Relativity.
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Summary. — An approach to shock waves, boundary surfaces and thin
shells in general relativity is developed in which their histories are
characterized in a purely geometrical way by the extrinsic curvatures
of their imbeddings in space-time. There is some gain in simplicity and
ease of application over previous treatments in that no mention of
« admissible » or, indeed, any space-time co-ordinates is needed. The
. formalism is applied to a study of the dynamics of thin shells of dust. .




Israel formulated the Einstein equations for a thin shell as a
purely geometric relation — the jump in extrinsic curvature

across the shell.
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Take AdS; in global coordinates
2 2
d82 — (1 4+ R_) dT2 . ( dR i . R2d@2

)T T
And perform the transformation:
R? 14 (1—A20%)r?/¢? , rsin 0
]_ —_— = p—
+ 1 (1_A22)02 Rsin © 0
where Q =1+ Arcosf
Then
dT? dr?
ds® — Q7% | f(r) 24

1 — A2/? r




What the
transformation has
done is shift the

“origin” of




2 _
ds® = Q7 [f(?“)dt2 _ar r2d92] 0= (9;),
f(r) n — ﬁda

Cutting along a constant theta line and computing the
extrinsic curvature shows that

K, = —Asinfyhg
So taking two copies of part of this space with 6 € [0, 6]

Shows that we have a domain wall of tension =
o = Asin(6y)/4nG A .............. A




Since the range of 0 is 20, at
r=0 there is a conical deficit.
This is interpreted as a point
particle in 3D.

The spacetime is therefore a
point particle “attached” to the
boundary by a domain wall.

This is an accelerating particle!




Acceleration is when an object is not travelling on a geodesic.
VT & T

For an observer at R=R; in AdS:

2 dR2
ds? g = — (1 - %) dt® + BT R? (d©? + sin® ©d¢?)
{2

The tangent vector is purely timelike, but the acceleration is
radial:

1 0 _Roa

T = A =VyT




The magnitude of the 0

acceleration is related By,
to RO \/1 -+ 62
R2 /¢4
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Using the coordinate transformation as before

R? 1+ (1— A%0%)r? /2 , rsin 0
T e 0 mOP= g

1+

To get back to global AdS

2

R
ds? o = —(1 + g—z)oﬂdtQ +

dR? do?
+ R? (d@2 + sin? @—)
R?2 2
14+ 3 K

And see consistency with (slow) acceleration and pure AdS.




In 4D, we use the C-metric to describe accelerating
black holes

d 2
+ g(0) sin® 9—>

g=1+2mAcosb f determines horizon structure —
=1+ Arcosb black hole / acceleration /




Look for an exact solution in 3D with the same type of
structure:

dy? dx?
P(y) Qz)

ds® = P(y)dr? —

The general solution is: Q(z) =c+bx +az®,  P(y) = A21 7~ QW)

Which, after coordinate rescaling/shifts reduces to:

Class | Q(x) P(y) Maximal range of x
I 1-2? | 5z + W —1) lz| <1
I [22-1| gp+(1—-9?)| z>1lorz< -1
1+ 22 (

R




Take each in turn. The first class looks very similar to the 4D
C-metric (r=-1/Ay, t = at/A, X = cos(¢/K) = cos(0))

B 1 at*  dr*  ,d¢?
1+ Arcos (¢/K)]? Fr) o f(r) " K?
2

KZ

ds?

flr) =1+ (1 - A%?)

Slow Acceleration Al < 1 No horizon




The presence of K now indicates both a conical deficit (the
particle) and a domain wall at ¢==xm=, i.e. codimension 1
defect. The conical deficit at r=0 has a natural mass:

1 ] 1

m,. — — _

C 4 K
Because of the nonzero extrinsic curvature along ¢==x m,
(thanks to A) there is a wall of tension =

0.06 -

0.04 -

0.02




Can follow a Fefferman-Graham prescription, giving the
expected boundary metric:

_ w(£)? [de_Azfz dg’ ]

70— A2 1—62

And find the mass from the stress tensor:

M = —i (E — arctan cot (f) )

8 \ 2 V1 — A2¢2




Compare to “particle” mass from conical deficit:




Although these have been
derived as “new” solutions,
we know that in 3D, gravity
does not propagate, so any
"vacuum” solution has to be
locally equivalent to AdS. The
transformation formulae for
the various solutions are quite
lengthy, but give an interesting
alternative viewpoint, and help
with understanding the “BTZ”
family of solutions.
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Recall the BTZ black hole is an
identification of the Rindler wedge:

Blue lines are constant ¢, and have -7\
zero extrinsic curvature,
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Recall the BTZ black hole is an
identification of the Rindler wedge:

Blue lines are constant ¢, and have
zero extrinsic curvature, so can cut
and paste along ¢—lines to form
the BTZ black hole. T




Looking at BTZ from the exact solution perspective:

2 _ 1 d_fz_ dr” .2 2]
B = e T E T
2
F(r) = —m2(1 — A2%r2) + K = 1/m
¢ (Azm.A>

Q(r,¢) =1+ Ar cosh(map)




Adding A in the class 2’s
skews the constant ¢ lines,
changing the way AdS is
sliced and adding extrinsi
curvature to constant ¢—
lines — here is a slightly INR'SK
distorted BTZ (slow
acceleration)




Because the distorted ¢—
lines now wrap back to the
Rindler wedge horizon, for
some values of ¢ we get
an “additional” horizon
(different portions of the
bulk Rindler horizon).




Hiding within class | is a new BTZ-like solution. If Al>1,
have a horizon at 5 1

Yn = 1— A2/2
For the accelerating particle, we usually take y<-y,, with
y ~ -1/Ar, but can also have y € (yp, x) € (xy,1)

To make this look more familiar, take

At !
_a7 y_Ap7

K = 7/ arccos (x4 ) > 7/ arccos (yp) > 2

x = cos (¢p/K)

where

So that this solution is clearly disconnected from the



flp) =1— (A2 —1)p*/¢2

Plotting this solution in
global coordinates shows a
clear parallel with BTZ. This
time however, there is no
continuous link to the BTZ

metric.




Finally, the class 3 solutions
don’t allow for an identification
of a single bulk with a wall,
Instead we take 2 bulk copies
a la Randall-Sundrum to form
a braneworld.




= Have classified all possible 3D AdS solutions with
“acceleration”.

» Class | are (mostly) accelerating “particles”

» Class Il are generalized accelerating BTZ.

= Class Ill are braneworld-type solutions

= Have found a new solution (in Class |) that is BTZ in nature
but disconnected parametrically from BTZ.




Thank you
Werner!

Domain walls
Braneworlds
Instantons

PBH seeded vacuum decay




