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BLACK HOLE THERMODYNAMICS

Black hole thermodynamics is a proposed close mathematical analogy between
black hole dynamics and classical thermodynamics.
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BLACK HOLE THERMODYNAMICS

Law Classical thermodynamics Black holes

Zeroth T constant in equilibrium surface gravity κ constant on stationary horizon

First dE = TdS + · · · dM = κdA + · · ·

Second dS ≥ 0 dA ≥ 0

Third T 6→ 0 in finite process surface gravity κ 6→ 0 in finite advanced time

I Proposed by Bardeen–Carter–Hawking ’73 as statements within classical GR.

I Hawking radiation—interpret κ ∝ T
I Bekenstein entropy—interpret A ∝ S

I κ ∝ T, A ∝ S further justified once quantum effects are considered, but they are
formal analogies.

I Laws 0, 1, and 2 proved by Hawking, Carter, Bardeen–Carter–Hawking, Wald, ...
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REFRESHER ON SCHWARZSCHILD
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Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface Σ as depicted here.

The black hole interior is foliated by trapped surfaces (both future null expansions
negative)
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Maximally extended Schwarzschild is the unique maximal Cauchy development of the
data induced on a spacelike hypersurface Σ ∼= R× S2.

The black hole interior is foliated by trapped surfaces
(both future null expansions negative)
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REFRESHER ON GRAVITATIONAL COLLAPSE

Penrose diagram of gravitational collapse. One-ended Cauchy data!
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REFRESHER ON SUBEXTREMAL REISSNER–NORDSTRÖM: 0 < |e| < M
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REFRESHER ON EXTREMAL REISSNER–NORDSTRÖM: 0 < |e| = M
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REFRESHER ON EXTREMAL REISSNER–NORDSTRÖM: 0 < |e| = M
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REFRESHER ON EXTREMAL REISSNER–NORDSTRÖM: 0 < |e| = M
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REFRESHER ON EXTREMAL REISSNER–NORDSTRÖM: 0 < |e| = M
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REFRESHER ON SUPEREXTREMAL REISSNER–NORDSTRÖM: 0 < M < |e|
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SURFACE GRAVITY κ OF REISSNER–NORDSTRÖM

I RN with mass M and charge e, |e| ≤ M, has

κ = 2πT =

√
M2 − e2

(M +
√

M2 − e2)2

I Subextremal: κ > 0
I Extremal: κ = 0
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THE THIRD LAW

Original formulation of Bardeen–Carter–Hawking:

Statement revised by Israel ’86:
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ISRAEL’S FORMULATION OF THE THIRD LAW

1. ‘Finite advanced time” replaces “finite sequence of operations.”
I Third law onto a similar footing as the second law: no quasistationary assumption.

2. “Any continuous process”: Fundamentally about non-generic behavior.
I BCH & Israel knew: Adding “generic” would make it an uninteresting utter triviality,

which does not even use the Einstein equations! (unlike Cosmic Censorship)

3. “Stress-energy tensor stays bounded” is a regularity condition.
I If singularities allowed, counterexample using massive dust shell. (Farrugia–Hajicek ’79)

4. Weak energy condition must be enforced.
I Otherwise: counterexample using charged null dust. (Sullivan–Israel ’80)

12 / 26



ISRAEL’S FORMULATION OF THE THIRD LAW

1. ‘Finite advanced time” replaces “finite sequence of operations.”
I Third law onto a similar footing as the second law: no quasistationary assumption.

2. “Any continuous process”: Fundamentally about non-generic behavior.
I BCH & Israel knew: Adding “generic” would make it an uninteresting utter triviality,

which does not even use the Einstein equations! (unlike Cosmic Censorship)

3. “Stress-energy tensor stays bounded” is a regularity condition.
I If singularities allowed, counterexample using massive dust shell. (Farrugia–Hajicek ’79)

4. Weak energy condition must be enforced.
I Otherwise: counterexample using charged null dust. (Sullivan–Israel ’80)

12 / 26



ISRAEL’S FORMULATION OF THE THIRD LAW

1. ‘Finite advanced time” replaces “finite sequence of operations.”
I Third law onto a similar footing as the second law: no quasistationary assumption.

2. “Any continuous process”: Fundamentally about non-generic behavior.
I BCH & Israel knew: Adding “generic” would make it an uninteresting utter triviality,

which does not even use the Einstein equations! (unlike Cosmic Censorship)

3. “Stress-energy tensor stays bounded” is a regularity condition.
I If singularities allowed, counterexample using massive dust shell. (Farrugia–Hajicek ’79)

4. Weak energy condition must be enforced.
I Otherwise: counterexample using charged null dust. (Sullivan–Israel ’80)

12 / 26



ISRAEL’S FORMULATION OF THE THIRD LAW

1. ‘Finite advanced time” replaces “finite sequence of operations.”
I Third law onto a similar footing as the second law: no quasistationary assumption.

2. “Any continuous process”: Fundamentally about non-generic behavior.
I BCH & Israel knew: Adding “generic” would make it an uninteresting utter triviality,

which does not even use the Einstein equations! (unlike Cosmic Censorship)

3. “Stress-energy tensor stays bounded” is a regularity condition.
I If singularities allowed, counterexample using massive dust shell. (Farrugia–Hajicek ’79)

4. Weak energy condition must be enforced.
I Otherwise: counterexample using charged null dust. (Sullivan–Israel ’80)

12 / 26



ISRAEL’S FORMULATION OF THE THIRD LAW

1. ‘Finite advanced time” replaces “finite sequence of operations.”
I Third law onto a similar footing as the second law: no quasistationary assumption.

2. “Any continuous process”: Fundamentally about non-generic behavior.
I BCH & Israel knew: Adding “generic” would make it an uninteresting utter triviality,

which does not even use the Einstein equations! (unlike Cosmic Censorship)

3. “Stress-energy tensor stays bounded” is a regularity condition.
I If singularities allowed, counterexample using massive dust shell. (Farrugia–Hajicek ’79)

4. Weak energy condition must be enforced.
I Otherwise: counterexample using charged null dust. (Sullivan–Israel ’80)

12 / 26



THE THIRD LAW

Conjecture (The third law, BCH ’73, Israel ’86).
A subextremal black hole cannot become extremal in finite time by any continuous process,
no matter how idealized, in which the spacetime and matter fields remain regular and obey the
weak energy condition.

Theorem (K.–Unger ’22).
Subextremal black holes can become extremal in finite time, evolving from regular Cauchy data
for the Einstein–Maxwell-charged scalar field system.

In particular, the “third law of black hole thermodynamics” is false.
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ISRAEL’S ARGUMENT I

I First incoming matter flux creates (dynamical) subextremal apparent horizon.
I Second matter flux pushes to extremal horizon.
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ISRAEL’S ARGUMENT II

(1) Raychaudhuri: trapped surfaces persist in evolution.

(2) Extremal horizons: neighborhood is free of trapped surfaces.

(1) & (2)⇒ horizon cannot be extremal!

Implicit assumption: regular solution⇒ connected outer apparent horizon.

However, outer apparent horizon can jump in smooth spacetimes.
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COUNTEREXAMPLE TO THE THIRD LAW
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I Fine-tuned Cauchy data on Σ for Einstein–Maxwell-charged scalar field which
undergo gravitational collapse.

I Forms an exactly Schwarzschild apparent horizon.
I Forms an exactly extremal Reissner–Nordström event horizon later.
I Arbitrarily regular: ∀k ∈ N, there exists a Ck example.
I Dominant energy condition (⇒weak energy condition)
I Cauchy data are fined-tuned, yet “∞-dimensional”.
I Proof directly extends to massive fields for m� |e|.
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ISRAEL’S PAPER REINTERPRETED
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Outermost apparent horizon becomes disconnected
the instant the black hole becomes extremal!

This is a feature, not a bug!
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EINSTEIN–MAXWELL-CHARGED SCALAR FIELD SYSTEM

I Lorentzian manifold (M3+1, g)

I 2-form F = dA (electromagnetism)
I Charged (complex) scalar field φ

Rµν(g)− 1
2 R(g)gµν = 2

(
TEM
µν + TCSF

µν

)
∇µFµν = 2e Im(φDνφ)

gµνDµDνφ = 0

TEM
µν = gαβFανFβµ − 1

4 FαβFαβgµν

TCSF
µν = Re(DµφDνφ)− 1

2 gµνgαβDαφDβφ

I Spherical symmetry!
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PROTOTYPE: MINKOWSKI TO SCHWARZSCHILD GLUING

H
+

Minkowski

Schwarzschild
mass Mf

radius Ri

radius 2Mf

I +

I Goal: Create spacetime from grav. collapse containing the above Minkowski and
Schwarzschild patches.

I Enemy: Decoherence of waves.

I Solution: Characteristic gluing makes superposition of waves purely ingoing
along a single outgoing null hypersurface, e.g. H+
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CHARACTERISTIC DATA TO CAUCHY DATA

H
+

Minkowski

radius Ri

radius 2Mf

I +

Σ

Obtain Cauchy data by solving backwards.
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PROTOTYPE: MINKOWSKI TO SCHWARZSCHILD GLUING

H
+

Minkowski

radius Ri

radius 2Mf

I +

Σ

Characteristic gluing for the vacuum Einstein equations recently initiated in
fundamental works of Aretakis–Czimek–Rodnianski and refined by
Czimek–Rodnianski, but in a perturbative regime around Minkowski space which is
inapplicable here.

The present problem is fundamentally nonlinear and nonperturbative, but is tractable
because of the symmetry assumption.
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MINKOWSKI TO SCHWARZSCHILD GLUING

Theorem (K–Unger ’22).
For any k ∈ N and 0 < Ri < 2Mf , the Minkowski sphere of radius Ri can be characteristically
glued to the Schwarzschild event horizon sphere with mass Mf to order Ck within the
Einstein-scalar field model in spherical symmetry.

Minkowski sphere
radius Ri
v = 0

Schwarzschild horizon sphere
mass Mf
radius 2Mf
v = 1

pres
cri

be φ
(v

)

k + 1
pulses

...

α1

α2

αk+1

αk
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ASPECTS OF THE PROOF: SCHWARZSCHILD
I Null constraint system: coupled nonlinear system of ODEs sourced by φ(v)

I Scalar field ansatz

φα(v) =
∑

1≤j≤k+1

αjχj(v), α ∈ Rk+1

I Initialize ∂uφα(0) = · · · = ∂k
uφα(0) = 0

I Initialize r(v) teleologically at v = 1 (∂vr(0) is a gauge choice, but ∂vr(1) = 0!)
I For each α, generate r(v), ∂ur(v), ∂uφα(v), etc.
I The antipodal map α 7→ −α leaves geometric quantities fixed (r, Ω2, and

derivatives)
I The antipodal map α 7→ −α changes the sign of the scalar field and its derivatives
I In particular, the map

α 7→
(
∂uφα(1), . . . , ∂k

uφα(1)
)
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DISPROOF OF THE THIRD LAW
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THE THIRD LAW IN THE VACUUM CASE

Conjecture.
There exist Cauchy data for the Einstein vacuum equations

Rµν = 0

which form an exactly Schwarzschild apparent horizon, only for the spacetime to form an
exactly extremal Kerr event horizon at a later advanced time. In particular, already in
vacuum, the “third law of black hole thermodynamics” is false.

Theorem (K.–Unger, ’23).
For any 0 ≤ |a| � M, there exist Cauchy data for the Einstein vacuum equations

Rµν = 0

which form an exactly Kerr event horizon at a finite advanced time with specific angular
momentum a and mass M.

22 / 26



THE THIRD LAW IN THE VACUUM CASE

Conjecture.
There exist Cauchy data for the Einstein vacuum equations

Rµν = 0

which form an exactly Schwarzschild apparent horizon, only for the spacetime to form an
exactly extremal Kerr event horizon at a later advanced time. In particular, already in
vacuum, the “third law of black hole thermodynamics” is false.

Theorem (K.–Unger, ’23).
For any 0 ≤ |a| � M, there exist Cauchy data for the Einstein vacuum equations

Rµν = 0

which form an exactly Kerr event horizon at a finite advanced time with specific angular
momentum a and mass M.

22 / 26



OUTLOOK: “MODULI SPACE” OF GRAVITATIONAL (NON-)COLLAPSE

initial data for which
no black hole forms

initial data for which
a black hole forms

Critical behavior: naked singularities expected when a “low energy” black hole forms.
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OUTLOOK: “MODULI SPACE” OF GRAVITATIONAL (NON-)COLLAPSE

initial data for which
no black hole forms

initial data for which
a black hole forms

Minkowski space (stable)
asymptotically subextremal
black hole (stable)

Choptuik’s critical collapse picture:
“hypersurface” of naked singularity spacetimes

?

?

Additional critical behavior: Some extremal black holes lie at the threshold!
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CRITICAL BEHAVIOR NEAR EXTREMALITY

Conjecture.
There exist regular data leading to the formation of an extremal black hole, that can be perturbed
to disperse, i.e. no black hole forms.

The very black-holeness of certain spacetimes is unstable!

I A related conjecture is stated by Dafermos–Holzegel–Rodnianski–Taylor (’21).
I This critical behavior is fundamentally different to Choptuik’s critical collapse

picture: No naked singularity arises at the threshold.

We propose to first study this phenomenon in the Einstein–Maxwell–massless Vlasov
model—inspired by classical work of A. Ori.
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INJECTION OF CHARGED MASSLESS VLASOV BEAM

Conjecture.
There exist a smooth family of solutions (gλ, Fλ, fλ)λ∈(−ε,ε) to the
Einstein–Maxwell–massless Vlasov system with the following behavior:
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CONCLUSION

1. Subextremal black holes can become extremal: The third law is false.

2. Israel’s argument shows that then the apparent horizon has to jump.
3. Don’t fear extremal (T = 0) black holes:

I Our construction: T = 0 is not more difficult to form than T > 0 and T → 0 is
continuous.

I No naked singularities at threshold: Not every part of max. extended RN is physically
relevant as T → 0.

I But instead: extremal black holes exhibit a critical phenomenon different from
Choptuik’s picture.
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