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Black Hole Information Loss Paradox

Hawking radiation

BH formation

• Black hole     thermal body with ≈

classical picture

emit radiation and evaporates away 
(Hawking evaporation) 

- from entanglement entropy point of view -

Bekenstein (1972)

Hawking (1974)

• Bekenstein-Hawking entropy:

(focus on Schwarzschild BH for simplicity)



Hawking radiation

initial state

entangled

B
A

???

because B = void 

contradiction!!

• after evaporation

quantum picture

• state inside BH (B) is entangled with state outside (A)

• entanglement entropy

reduced density matrix:

Black Hole Information Loss Paradox
- from entanglement entropy point of view -



Page curve
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Assertion is that entanglement entropy shouldn’t exceed BH entropy

Questions: 

• can quantum gravity effect be significant when BH is still macroscopic?

D. Page, PRL 71 (1993) 3743

• Is SBH the absolute upper bound of entanglement entropy?

(recent island conjecture computations seem to support these, but …) 

Bekenstein-Hawking
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Hawking radiation as instantons

• Path-integral derivation of black hole radiance

• Stationary bubbles and their tunneling channels toward trivial geometry

• Band-aid for information loss from black holes

Israel & Yun, PRD82 (2010) 124036

• Hawking radiation as tunneling

Hartle & Hawking, PRD13 (1976) 2188

Parikh & Wilczek, PRL85 (2000) 5042

➢ particle picture (transition amplitude from B to C to A)

➢ thin shell model (tunneling probability from B to C)

Chen, Domenech, MS & Yeom, JCAP 04 (2016) 013

from HH (’76)
BH background

includes backreaction

BH BH  +  ( )M M   −

- brief (highly biased) historical remarks -

from IY (’10)
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• take a conservative approach, and consider semi-classical wavefunction

• Hawking radiation may be regarded as quantum tunneling via instantons

P. Chen, MS & D-h. Yeom, 

1806.03766

B : bounce action for emission of quantum 

• This implies there should also be a tunneling channel/instanton from BH 

geometry to no BH (ie, trivial) geometry with the probability 

tunneling between semi-classical histories!
J. Hartle & T. Hertog, 

1502.06770

• semi-classical histories are described by WKB wavefunctions

or

(>>1) : on-shell action

Hawking radiation as instantons 
- our strategy -
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Black hole evaporation as multiple classical histories

credit: figures by D-h. Yeom

|𝒊⟩

tunneling to

information-preserving

histories
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Lorentzian

Lorentzian
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on-shell

Black hole evaporation as multiple classical histories

• tunneling mediated by instantons

• tunneling probability ~ e-B

B : bounce action

for BH of mass M

P. Chen, MS & D-h. Yeom, 1806.03766 credit: figures by D-h. Yeom
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Page curve under multiple classical histories

j: classical states

a: quantum states in state j

• if we divide each classical state to two subsystems, 

A and B, the entanglement entropy is given by

• state having multiple classical histories

(decoherence between classical states)

B
A

9
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• if we identify        with the evaporating BH (ie information-losing) history 

and          with no BH (ie information-preserving) histories 

because B = void for information-preserving histories

• p2 is given by the persistent probability of the (evaporating) BH 

(ie, information-losing) history 

B
A A

information-preservinginformation-losing

• Page curve is obtained if  p2 initially increases and p2 → 0 at late times
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BH persisting probability

• for a single instanton transition from BH with mass M to trivial geometry

• for n-instanton transition

• persistent probability: p2

BH geometryBH geometry

trivial geometry

Chen, Domenech, MS & Yeom, 1704.04020

initial and final BH 

surface areas



The probability to tunnel to a trivial geometry dominates

at late times when M << M0

12

BH mass when it’s formed



• Page curve is obtained, albeit being modified, with the maximum at 

very late time when S=Smax ~ ln S0  for S0>>1

𝑆 ≃ 𝑝1𝑆1 + 𝑝2𝑆2

13

entropy due to Hawking radiation

• Smax is still large enough to be semi-classical for macroscopic BHs

semi-classical approx. is 

valid for S0>>1

e.g. for M0=1 g,

S0 ~1010 , Smax~23



𝑆 ≃ 𝑝1𝑆1 + 𝑝2𝑆2
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entropy due to Hawking radiation

• Sent violates Bekenstein-Hawking bound after the (original) Page time 

• existence of a BH remnant / monster state ?

Chen, Ong & Yeom, 1412.8366 

semi-classical approx. is 

valid for S0>>1

e.g. for M0=1 g,

S0 ~1010 , Smax~23



quotes from Israel & Yu (‘10)
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for any chain of decays ending in complete evaporation. I f N (m, e) is the number of ways
the hole can evaporate, we must have N P = 1. Hence

N = eS (5.2)

This gives an interpretation of the Bekenstein-Hawking entropy in terms of the number
of modes of evaporation. Equation (5.1) can now be reinterpreted as equating, to leading
order (up to a neglected cross-section factor), the transition probability to a statistical factor
eS1/eS , equal to the ratio of the number of final states to initial states.
Thus, the degrees of freedom in the outgoing radiation equal (or even exceed, on the thin-

shell model) the maximum information capacity of the hole, as measured by the Bekenstein-
Hawking entropy. This provides evidence, purely on the basis of counting, that unitarity
could be preserved and that the radiation has enough room to accommodate all of the
information. (But this has not been a matter of universal agreement[3].)
In a significant paper [4], Zhang et al have reopened the question whether deviations

from exact thermality encoded in (4.15) or (5.1) produce correlations actually capable of
carrying information.
Generally, one defines the correlation coefficient C(a, b) between two events a and b by

C(a, b) = ln
P (a, b)

P (a)P (b)
(5.3)

where P (a, b) is the probability of both a and b, and P (b) = a P (a, b) the probability of b.
The conditional probability of b (given that a has already occurred) is

P (b|a) =
P (a, b)

P (a)
(5.4)

In our case (confining the argument to uncharged evaporation for simplicity), the prob-
ability that a black hole of mass m emits a quantum of energy E is, by (5.1),

P (m, E ) = exp − 4π[m 2 − (m − E )2]

and this yields a nontrivial correlation [4]

C(E 1 , E 2) = ln
P (m, E 1 + E 2)

P (m, E 1)P (m, E 2)
= 8πE 1E 2 (5.5)

I t might be thought that one should replace P (m, E 2) in (5.5) by P (m − E 1 , E 2) to take
account of mass loss from the first emission. That would be tantamount to replacing P (b) in
(5.3) by the conditional probability P (b|a). But one sees at once from (5.4) that this would
give C(a, b) = 0 identically for any two events. The argument is clearly circular: it absorbs
the correlations themselves into the test for their existence.
Thus, as emphasized in [4], the original conclusion (5.5) is correct. The radiation does

have correlations and, according to (5.2), these have the capacity to carry off the maximum
information content of the hole.
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extension of the thin-shell formula(4.13) encounters the difficulty that it is generally impos-
sible to achieve isometry of the two faces of a thin shell sandwiched between different Kerr
geometries.)
In (4.15) and (4.17) we have two different formulae, based on a thin-shell and a continuum

model respectively, for the emission probability P from a charged black hole. Explicitly, the
exponents are

−
2π

κ
E = π

r 2H√
m 2 − e2

∆ rH , ∆ S = 2πrH ∆ rH (4.19)

for the thin-and thick-shell cases respectively. For uncharged black holes these two expres-
sions agree, but they begin to diverge for non-vanishing charge.
I t will require a deeper investigation to decide which of these expressions is more correct,

or (more likely) to bring to light some more complex formula which amalgamates features of
both. Both depend only, as they should, on the observable, i.e. the states before and after
emission.
One expects discontinuous aspects of the quantized emission to be more marked at low

temperatures, and here the thin-shell formula (4.15), which predicts zero emission probability
for zero temperature (κ+ = 0), accords well with expectations. In general, however, it
is not clear how well a thin-shell idealization is able to handle the complex form of the
Einstein-Maxwell interaction term ede/rH (m, e) in (4.12). The arithmetic-mean prescription
(A.17) for the thin-shell action was designed to deliver the right classical equations of motion
(A.18) for the shell, but that depends on the simple bilinear form qϕ of the interaction
(A.15). Arithmetic-mean recipes are generally limited to linear theories (like Einstein’s
in the distributional limit – only terms linear in second metric-derivatives survive in the
curvature) and bilinear interactions. On these grounds we tend to favour the continuum-
model formula (4.17) over (4.15) for charged black holes whose surface gravity is not too
small. I t is questionable whether naturally evaporating black holes ever approach a state of
extremality (stable or unstable); numerical evidence suggests that angular momentum and
charge are evaporated preferentially. All of this raises questions worth exploring further, in
particular the speculative possibility of stable, information-storing black hole remnants.

5 Correlations, entropy, un itar ity

We found in the previous section that the probability of a black hole of mass m and
charge e (hence Bekenstein-Hawking entropy S(m, e) = 1

4
AH ) decaying to a state (m 1, e1) is

P (m, e→ m 1, e1) = e
− (S−S1 ) (5.1)

according to a thick-shell model for the evaporating particle. (On the alternative thin-shell
model, (5.1) becomes an inequality, P < e− (S−S1 ) .) The result is obviously transitive and
leads to

P (m, e→ m 1, e1 → m 2, e2 → · · · → 0) = e−S(m ,e)

12

at the end of sec. 4

2nd paragraph of sec. 5

These words make me feel much closer to Werner, 

though he must have been thinking much deeper than I.
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Summary

• We propose resolution to BH information loss paradox with Euclidean 

path integral approach under semi-classical approximation

• Hawking radiation as quantum tunneling implies the existence of a 

tunneling channel / instanton to trivial geometries

• This further implies the existence of multiple classical histories

• Trivial geometries dominate the wavefunction at late times

• Page curve for the entanglement entropy is obtained, albeit 

being modified, which violates the Bekenstein-Hawking bound

Relation (consistency/controversy?) to the island conjecture?
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