Low Background Techniques

Rafael F. Lang Purdue University rafael@purdue.edu

GRIDS August 2018

Many thanks to Jodi Cooley & Hardy Simgen

Overview

- I. The Name of the Game
- II. Underground labs
- III. Passive shielding
- IV. Active shielding
- V. Material Assay
- VI. Fiducialization
- VII. Liquid Purification
- VIII. Discrimination
- IX. Coincidence and Redundancy
- X. Full Modeling

Take Home:

• Sensitivity goes like $\frac{\text{Signal}}{\sqrt{\text{Background}}}$

Signal / VBackground

If you can, increase Signal.

Signal / VBackground

Sensitivity goes like $\frac{\text{Signal}}{\sqrt{\text{Background}}}$

If you can, decrease Background: This lecture.

II. Underground Labs

Take Home:

- Most background from cosmic rays
- Even shallow underground labs good
- Lots of deep labs to pick from

Cosmic Rays at Sea Level

species fl	$ux / m^{-2} s^{-1}$
muons	≈ 400
gammas	≈ 300
electrons, positr	ons ≈ 200
protons	≈ 6

Underground Labs

٢

Mine or Tunnel?

Gran Sasso mountain range

cable car to ski resort

highway

lab

hiking path

- tunnel

Assergi

5

Overburden

Reduces cosmic ray

- flux (hadrons & muons)
- induced spallation products (mostly neutrons)

Muon flux depends on overburden, overburden profile, and seasonal effects

Davis Experiment 1970-1994

615t perchlorethylene C₂Cl₄

 $\nu_e + {}^{37}\text{Cl} \longrightarrow {}^{37}\text{Ar} + e^-$

Q_{FC}813.5

Proportional Counter

Fig. 7.—Proportional counter geometry. Sketch of the miniature proportional counters used to observe 57 Ar decays. Counters typically have an overall length of 20 cm, with an active region 30 mm long and 4.5 mm in diameter.

III. Passive Shielding

Take Home:

- Pb simple against gammas
- PE simple against neutrons
- Concrete and Water cheap

Radioactive Sources

- primordial
 e.g. ²³²Th series, ²³⁸U series, ⁴⁰K (5kBq/physicist)
- cosmic ray induced or spallation e.g. ¹¹C, ³⁹Ar
- anthropogenic
 e.g. ⁶⁰Co, ⁸⁵Kr, ⁹⁰Sr, ¹³¹I
- plus the daughters e.g. ²⁰⁸Tl, ²²²Rn, ...

Decay Chains

Never expect them to be in secular equilibrium!

A single isotope can give all kinds of α , β , γ

²²²RnCrap

3.8235 d	²²² 86 86 Rn 100 ↓ α	α: 5.4895 (99.92) α: 4.986 (0.078)		γ: 511 (0.076)
3.10 m	²¹⁸ 84 0.020 99.980	α: 6.0024 (100)		
1.6 s 26.8 m	$\begin{array}{c c} \beta \swarrow & & & \alpha \\ 218 & & & 214 \\ 85 & & & 82 \\ 99.9 & 100 \\ \alpha \searrow & \swarrow & \beta \end{array}$	α: 6.694 (90)	β: 0.728 (42.2) β: 0.670 (48.9) β: 1.030 (-6.3)	 γ: 351.93 (35.1/37.6) γ: 295.22 (18.2/19.3) γ: 242.00 (7.12/7.43)
19.9 m 1.3 m 164.3 μs	$\begin{array}{c c} 214\\ 83\\ 83\\ 0.021 & 99.979\\ \alpha \swarrow \beta \\ \alpha \swarrow \beta \\ 210\\ 101 & 214\\ 81\\ 100 & 84\\ 100\\ \beta \searrow \swarrow \alpha \end{array}$	α: 5.452 (53.9) α: 5.516 (39.2) α: 7.6868 (99.99)	$ \begin{array}{c} \beta: \ 3.275 \ (18.2) \\ \beta: \ 1.542 \ (17.8) \\ \beta: \ 1.508 \ (17.02) \\ \beta: \ 1.425 \ (\ 8.18) \\ \beta: \ 1.894 \ (\ 7.43) \\ \end{array} $	$\begin{array}{l} \gamma: \ \ 609.31 \ (44.6/46.1) \\ \gamma: \ 1764.49 \ (15.1/15.4) \\ \gamma: \ 1120.29 \ (14.7/15.1) \\ \gamma: \ 1238.11 \ (\ 5.78/5.79) \\ \gamma: \ 2204.21 \ (\ 4.98/5.08) \\ \gamma: \ \ 799.7 \ (\ 0.0104) \\ \gamma: \ \ 799.7 \ (\ 0.021) \end{array}$
22.3 у	$\begin{array}{c} 210\\82 \\ \textbf{Pb} \\ 100 \downarrow \beta \\ 210 \\ \textbf{m} \end{array}$		β: 0.017 (80) β: 0.063 (20)	γ: 46.54 (4.25)
5.013 d 138.376 d stable	$ \begin{array}{c} 213 \text{Bi} \\ 100 \downarrow \beta \\ 210 \text{Po} \\ 84 \text{Po} \\ 100 \downarrow \alpha \\ 206 \text{Pb} \\ \end{array} $	α: 5.3043 (99.99)	β: 1.162 (99)	<i>γ</i> : 803.10 (1.22*10 ⁻³)

222RnCrap: Resulting Issues

- Kamland: ${}^{13}C(\alpha,n){}^{16}O$
- PICO: various alpha decays
- CDMS-II: low energy surface electrons from ²¹⁰Pb
- CRESST-II: degraded (low energy) ²¹⁰Pb recoils
- $0\nu\beta\beta$: various gamma lines
- Xenon TPCs: mis-reconstructed plated out decays

Solid Shielding, e.g. Majorana

Matt Kapust

Archeological Lead: CUORE

Neutrons

Solid Shielding, e.g. XENON100

Or simply use water

Marco Selvi

IV. Vetos

Take Home:

- Create Virtual Depth
- Reduce coincident backgrounds

Virtual Depth

unshielded

μ Veto, e.g. XENON1T

10m tall, 9.6mØ 700t high purity water

Passive shield against γ & n Active shield against μ: water Cherenkov muon veto

DarkSide

Argon target

Þ

2015

Westerdale **TAUP**

Shawn

Liquid scintillator veto pseudocumene plus boron

Water Cherenkov detector-

V. Material Selection

Take Home:

- Be careful what you build from.
- Screen everything.

Requirements

e.g. BOREXINO: ${}^{14}C/{}^{12}C < 10^{-18}$ ${}^{nat}K < 10^{-14} \text{ g/g } ({}^{40}K)$ ${}^{nat}Ar < 70 \text{ vol-ppb } ({}^{39}Ar)$ ${}^{nat}Kr < 0.1 \text{ vol-ppt } ({}^{85}Kr)$

> e.g. GERDA: cryostat stainless <5mBq/kg ²²⁸Th detector holder PTFE <100µBq/kg ²²⁸Th shield argon <1µBq/m³ (STP) ²²²Rn

Laborious yet Heroic Efforts

Hand-machine every nut and bolt Work with suppliers

But little research into clean ores
Assay Techniques

Gamma emission Pb, Bi, Tl, K, Co, ... → HPGe spectroscopy Neutron emission radiogenic (U/Th) → NAA / ICPMS

Alpha Spectrometry, XIA, Beta Cage

Radon outgassing ²²²Rn (²²⁶Ra), ²²⁰Rn (²²⁴Ra) → Radon emanation systems

HPGe Screening

Example: Hamamatsu R11410

1503.07698

XENON

Neutron Activation Analysis

²³⁸U(n, γ)²³⁹U ^(t_{1/2}=24m) ²³⁹Np ^(t_{1/2}=2.4d) [103,106,228,278] keV γ 's ²³²Th(n, γ)²³³Th ^(t_{1/2}=22m) ²³³Pa ^(t_{1/2}=27d) [300,312] keV γ 's ⁴¹K(n, γ)⁴²K ^(t_{1/2}=12h)1524 keV γ , ⁴⁰K from natural abundance

ICPMS

Ionize material, accelerate plasma in mass spectrometer

Surface Alpha Screening

Jodi Cooley

Radon Emanation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cu Electroforming (PNNL)

MAJORANA: electrodeposit Cu onto mold underground

U&Th chains <0.1µBq/kg

Dole

Community Database

Community Material Assay Database

10000	Search Submit	Settings	About			
	copper			ρ		
• EXO (2008)	Copper, OFRP, Norddeutsche Affinerie	Th	< 2.4 ppt	U	< 2.9 ppt	 ×
• EXO (2008)	Copper tubing, Metallica SA	Th	< 2 ppt	U	< 1.5 ppt	×
► ILIAS ROSEBUD	Copper, OFHC					×
> XENON100 (2011)	Copper, Norddeutsche Affinerie	Th-228	21() muBq/kg	U-238	70() muBq/kg	 ×
▶ XENON100 (2011)	Copper, Norddeutsche Affiinerie	Th-228	< 0.33 mBq/kg	U-238	< 11 mBq/kg	×
► EXO (2008)	Copper gasket, Serto	Th	6.9() ppt	U	12.6() ppt	 ×
► EXO (2008)	Copper wire, McMaster-Carr	Th	< 77 ppt	U	< 270 ppt	 ×

Radon Free Air, e.g. @SNOLab Lab Air ~130 Bq/m³

Radon-mitigated air <0.1 Bq/m³ < to radon-free cleanroom

VI. Fiducialization

Take Home:

• Surfaces are bad, bulk is good

Single Phase, e.g. DEAP3600

Vertex position from scintillation (S1) hit pattern Worked great for v experiments

Dual-Phase TPC: e.g. XENON1T

3D position information S2 hit pattern: $\delta r < 2 \,\mathrm{cm}$ drift time: $\delta z < 500 \,\mu\mathrm{m}$

Self-Shielding in Xenon

Reduce background with exp(-diameter/ λ_{v})

XENON1T Background Examples210Po: at wall, as expected218Po: uniform, as expected

VII. Liquid Purification

Take Home:

- Adsorption filters
- Distillation techniques

Adsorption

Great for

- All kinds of purifications
- Rn free air

Fails if

- binding energies too similar (Ar/N₂, O₂/N₂)
- carrier gas stronger bound than contamination (Kr in Xe)
- adsorber emanates more than adsorbs (Rn)

Kr Distillation (85Kr)

Commercial Xe: >10 ppb Kr/Xe XENON1T requirement 0.2 ppt 5.5 m distillation column, 6.5 kg/h throughput

Isotopic Separation for DarkSide

- ^{atm}Ar contains too much ₃₉Ar
- undergroundAr from CO₂ well better:

• "Aria" column for isotopic separation

Putting all together, e.g. LZ

						The last		1542	1		A REAL PROPERTY AND A REAL
Intrinsic Contamination Backgrounds	Mass (kg)	Composite	U earry (mRic/kol)	U late	Th early (mRe/ke)	Th late	Co60	K40 (mRolkal	n/yr (inc. 8.5. cei)	ER (cts)	NR (cts)
Linear DET Structure	48.7	v	532	0.80		0.72	0.03	381	523	0.14	0.001
Opper PMT Soucture	71.7	· ·	2.62	0.24	0.41	0.30	0.00	1 33	8.57	0.08	0.001
DAMAG 25 DATe	01.0	- v	71.63	1 20	9.12	2 99	2.00	15.41	81.83		0.001
RELIVIUS Plane 1	21	i i i i i i i i i i i i i i i i i i i	369.62	75.87	38.91	33.07	0.97	50.58	25.25	0.97	0.013
R11410 PM1 Bases			198.02	50.00	18.01	18.00	18.25	412.67	62.08	0.11	0.000
RB/782 PMIS	0.1		62.17	1 20	1.01	10.00	24.44	12.01	61 71	0.02	0.000
R8520 Skin F PMTs			02.17	100 45	42.10	97.62		122.61	20.1	0.00	0.000
R8520 Skin PMT Bases	62.6		212.35	7.05	1 24	31.02	0.01	6.00	0.75	0.00	0.000
PMT Cabling	62.5		0.01	0.03	0.00	0.02	0.00	0.42	0.75	0.00	0.000
IPC PIFE	164.0		0.02	0.02	0.03	0.03	0.00	0.12	0.00	0.00	0.000
Grid Wires	0.18		1.20	0.27	0.33	0.48	1.00	0.40	0.00	0.00	0.000
Grid Holders	82.3		2.00	0.63	0.34	0.62	0.00	2.62	20.71	0.01	0.006
Field Shaping Rings	82.5		5.48		0.72	0.65	0.00	2.00	41.04	0.96	0.016
TPC Sensors	4.45		21.1/	5.04	1.8/	1.56	1.30	9.36	4.90	0.02	0.000
TPC Thermometers	0.57		26.57		5.57		0.99	462.60		0.05	0.000
Xe Recirculation Tubing	15.1		0.79	0.18	0.23	0.33	1.05	0.30	0.64	0.00	0.000
HV Conduits and Cables	137.7	Y	3.6	2.3	0.6	0.8	14	2.5	26.5	0.05	0.006
HX and PMT Conduits	199.6	Y	3.36	0.48	0.48	0.58	1.24	1.47	5.23	0.05	0.001
Cryostat Vessel	2705.0	Y	1.69	0.11	0.40	0.40	0.18	0.54	159.44	0.94	0.017
Cryostat Seals	33.7	Y	75.29	27.56	3.50	5.93	9.76	140.80	127.08	0.54	0.006
Cryostat Insulation	13.8	Y	85.84	36.55	11.44	9.15	3.40	78.87	35.33	0.48	0.004
Cryostat Tellon Liner	26.0	N	0.02	0.02	0.03	0.03	0.00	0.12	3.18	0.00	0.000
Outer Detector Tanks	4299.3	Y	3.28	0.60	0.54	0.57	0.03	4.78	200.65	0.96	0.002
Liquid Scintillator	17640.3	Y	0.01	0.01	0.01	0.01	0.00	0.00	14.28	0.03	0.000
Outer Detector PMTs	204.7	Y	570	470	395	388	0.00	534	7 587	0.01	0.000
Outer Detector PMT Supports	770.0	N	12.35	12.35	4.07	4.07	9.62	9.29	258.83	0.00	0.000
Subtotal (Detector Components)										8.01	0.101
222Rn (1.63 "Boko)										588	
220Bn (0.08 , Baka)										00	
pelike (0.015 ppl pip)	Annual State									245	
native (0.45 pph grg)										2.07	
natAr (0.45 ppb grg)											
210BI (0.1 µBq/kg)										40.0	
Laboratory and Cosmogenics										4.3	0.06
Fixed Surface Contamination										0.19	0.39
Subtotal (Non-v counts)										767	0.55
Physics Backgrounds											
136Xe 2vββ										67	0
Astrophysical v counts (pp+78e+13N										255	0
Astrophysical v counts (88)										0	0**
Astrophysical v counts (Hep)										0	0.21
Astrophysical v counts (diffuse super-	iova)									0	0.05
Astrophysical v counts (atmospheric)	Market State									l o	0.46
Subtotal (Physics backgrounds)										322	0.72
Tota										1.090	1.27
Tota (with 99.5% ER discrimination)	INR effici	encul								5.44	0.63
											D.R.

XENON1T Background Spectrum

VIII. Discrimination

Take Home:

• You should be able to tell signal from at least some background

ER/NR Discrimination (SR0)

ER/NR Discrimination (SR0)

Dark Matter Search (SR0)

First science data, 34 live days:

XENON 1705.06655

- WIMPs, SI & SD!
- iDM and other EFT
- GeV DM

53

here

ist

5

Distinguish Neutrons: Multiplicity

Neutrons look different from WIMPs!

Argon: Pulse Shape Discrimination

Ar₂^{*} dimer singlet state decays with 6ns, triplet state with 1.5μs. e.g. in DEAP3600:

Excellent performance: >10⁶ : 1 discrimination

But high energy threshold ~ 40 keV_{nr} (DarkSide-50)

IX. Coincidence & Redundancy

Take Home:

- Coincidence extremely powerful to fight accidental backgrounds
- Redundancy required to overcome unexpected backgrounds

Cowan & Reines 1956

Discover $\bar{\nu}_e$ via $\bar{\nu}_e + p \rightarrow n + e^+$ in triple coincidence: two 511keV & delayed n capture 2 METERS

FIG. 2. Sketch of detectors inside their lead shield. The detector tanks marked 1, 2, and 3 contained liquid scintillator solution which was viewed in each tank by 110 5-in. photomultiplier tubes. The white tanks contained the water-cadmium chloride target, and in this picture are some 28 cm deep. These were later replaced by 7.5-cm deep polystyrene tanks, and detectors 1 and 2 were lowered correspondingly. A drip tank, not shown here, was later set underneath tank 3 in the event of a leak. Because of the weight it was necessary to move the lead doors with a hydraulic system.

Cowan & Reines 1956

Discover $\bar{\nu}_e$ via $\bar{\nu}_e + p \rightarrow n + e^+$ in triple coincidence: two 511keV & delayed n capture 2 METERS

FIG. 2. Sketch of detectors inside their lead shield. The detector tanks marked 1, 2, and 3 contained liquid scintillator solution which was viewed in each tank by 110 5-in. photomultiplier tubes. The white tanks contained the water-cadmium chloride target, and in this picture are some 28 cm deep. These were later replaced by 7.5-cm deep polystyrene tanks, and detectors 1 and 2 were lowered correspondingly. A drip tank, not shown here, was later set underneath tank 3 in the event of a leak. Because of the weight it was necessary to move the lead doors with a hydraulic system.

nEXO 1806.10694.

Ba Tagging in nEXO Add coincidence to $0\nu\beta\beta$ signal: $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$

1.3 m

200mm Camera Lens

CCD
Sensitivity Limitations

No recent dark matter search was limited by a priori known radioactive backgrounds. Instead: detector artefacts

The Secret of Success

Redundant event information: can fight detector artefacts

(collect ~2.5MB per event)

Topologies with DAMIC CCD

²¹⁰Pb
$$\xrightarrow{(t_{1/2}=22y)} \beta + 210$$
Bi $\xrightarrow{(t_{1/2}=5d)} \beta + 210$ Po $\xrightarrow{(t_{1/2}=138d)} \alpha$

XENON1T: ²²²Rn Veto

map convection, match decay chain, veto ²¹⁴Pb

61 XENON

Take Home:

• Modeling your background is better than just cutting them

XENON1T Analysis, Simplified

ER & NR Band calibration

ER: 220Rn

NR: DD generator & ²⁴¹AmBe

Background Models

Accidental coincidences: Pairs of random S1 & S2s

Wall background: Tails of events on Teflon

Blinding & Salting

Remember medicine? Design your bias out of the analysis

82

XENON1T Science Run 1

XENON 1805.12562

XENON1T Science Run 1

XENON 1805.

2562

XI. Taking it Further

Take Home:

- Incredibly versatile technologies
- Lots to be creative with

