

Machine learning applications in NEWS-G

Noah Rowe

February 17st 2022

NEWS-G – Spherical Proportional Counter een's E Field [V/m] 10⁶ **Signal Generation:** 1. Primary ionization 10⁵ 2. Electron drift 10⁴ 3. Townsend avalanche 10^{3} lons 4. Positive ion drift 10^{2} Analysis data taken from 10¹ SEDINE at LSM in France

Problem Definition

Goals:

- Utilize machine learning methods to remove noise from recorded detector signals
- Model implementation should aid in measuring important signal characteristics, such as amplitude and risefeatures

Methods – Model Training

Trained on a simulation-based dataset modeled after our real detector

Energy: ~1370eV

5

Example Pulses

6

Simulated Energy Resolution

- Other single-output predictions
 - Direct energy prediction, pulse shape classification
- Double-deconvolution layer implementation
 - Explicitly add preprocessing steps to network layers
 - Learn to return primary electron arrival times
- Different model architectures for improved performance
 - Adversarial networks (see Tianai's poster)

Thank you!

Additional Slides

Simulated Energy Resolution Results /ew Leen's Ideal Reconstructed Energy based on Simulated Number of Secondary Electrons (eV) Noisy Double Deconvolution Denoised Double Deconvolution Clean Double Deconvolution Standard Deviation over Mean 10^{-1}

Number of Secondary Electrons

- Triggering efficiency test on simulated data
- 10000 events with a simulated pulse, 10000 noise traces
- Modelled electronic triggering
- Preliminary results

Model Architecture

Layer	Stride	Window	Output
Input			4096, 1
Convolution	1	1	4096, 8
Convolution	1	9	4088, 16
Average Pooling	2	2	2044, 16
Convolution	1	17	2028, 32
Average Pooling	2	2	1014, 32
Convolution	1	33	982, 64
Average Pooling	2	2	491, 64
Convolution	1	33	459, 32
Transpose Convolution	1	33	491, 32
Upsampling	2	2	982, 64
Transpose Convolution	1	33	1014, 64
Upsampling	2	2	2028, 64
Transpose Convolution	1	17	2044, 32
Upsampling	2	2	4088, 32
Transpose Convolution	1	9	4096, 16
Convolution (output)	1	1	4096, 1

- Developed an effective deep learning noise removal model
 - Resulting in more accurate energy measurements, primary electron counting
- Developed a single output model based on denoising architecture
 - Offers improvements in energy measurements
- Outlined further avenues for machine learning applications in NEWS-G