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High-Precision Half-Life Measurements

Motivation

&

Decay Scheme of 2°Na

® Qur goal is to provide a half-life
measurement of 2°Na as a first
experimental test of GRIFFIN 8-

for high-precision work o 19 Excited states 2.9 - 7.8 MeV
(eg. superallowed decay studies). 12.20%

26N, Ty = 1.0731?8i0.00024s

® The GRIFFIN result can be 87.80% 1809 ot
compared to a previously ~ 99%
published high-precision
measurement (Grinyer, 2005). 0+

26Mg

® ~ 99% of all 8 decays yield the

1809 keV ~-ray (Grinyer, 2008). Figure 1: A simplifed 26Na 3~ decay
scheme to the stable daughter 2Mg.
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~v Counting — The GRIFFIN Spectrometer

&

Both hemispheres of the GRIFFIN array showing the beamline and central vacuum chamber encased in a white
20 mm plastic delrin absorber.

« The S1140 Experiment was performed in November, 2017.
« Spherical array of 16 Clover detectors each consists of 4 HPGe Crystals
« ~9.1% photopeak efficiency at 1.3 MeV
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&

Data were Collected in Cycles
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Figure 2: 1-D plot showing the cycle number versus the time in cycles without incomplete cycle.
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High-Precision Half-Life Measurements

26Na Energy Spectrum

&

Counts versus Energy
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Figure 3: ~-ray singles spectrum for 26Na with all the trigger events for a single run (40 mins).
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High-Precision Half-Life Measurements

Finding the peak to Gate 1809 [keV]

Typical zoomed in region (1760 - 1860 keV): Counts versus Energy

&
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Figure 4: Typical zoomed in region (1760 - 1860 keV) from the ~-ray singles spectrum of 26Na. The

region due to pile up is clearly shown.




Data Selection Criteria

&

@ﬁon Criteria Utilized
3
1 / 2

Decay data for the Na-26 RF:IDOVG

experiment were collected in Pile Up )

cycles(l, 14, 5, 30 s).* Apply an energy Events using
gate on the 1809-| |a gate on

« The first selection criterion: | [keV transition in the K-Values

REJECT those cycles that||26-Mg

had very few, or even zero,
total counts recorded during
the decay measurement.

The precise values of the tape move, background, beam-on time and
* decay measurement were varied on a run-by-run basis.
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Dead-time and Detector Pulse Pile-up Corrections

Dead time is the total period of time during which hit detections cannot be processed

even if they are present.
| HpGe Channels (1-64) vs Time difference btn 2 sub. hits |
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Figure 5: The dead time of the GRIFFIN DAQ shown by plotting the time interval of two
consecutive y-rays for each crystal. 8




Dead-time and Detector Pulse Pile-up Corrections

Signal pile-up occurs when more than one energy deposition from
different physics events is present in a detector element during the
processing time of the initial interaction.

&
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One can clearly see the dependence of the energy resolution on the k-value. The energy resolution
worsens with decreasing integration length as expected and vice versa.
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Looking at the Pile Up and Single Events Spectra

Single Events (blue) KValue == 700 & Pile up Events Kvalue < 700

&

Single events, KValue = 700 1809 ke
S
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Figure 6: 26Na Energy spectra to distinguish between single and pile-up events.
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Dead-time and Detector Pulse Pile-up Corrections

Dead fraction versus time in cycles Fioty peobebiiy vessus time in cyckes
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Figure 7: Left: the bin-by-bin dead fraction vs. time in cycles(s) for all events and right: the bin-by-bin
pile-up probability vs. time in cycles(s) for all events.
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Half-Life Analysis: 2°Na Gated 1809keV Activity

26Na Gated 1809keV Activity with total decay time of 30s.

Uncorrected Data
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Figure 8: Non-corrected decay curve (left) and 1st order pile-up and dead-time (dt) correction decay

curve(right) obtained from a single run following a gate on the 1809-keV transition in

26Mg.
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Figure 9: 26Na: Deduced Half life versus run number (right). A weighted average of T% =1.07472 £

Deduced half-life of 26 Na versus all the run numbers.
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0.00023 s is deduced from these data where the uncertainty is statistical.
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Half-Life Analysis: “°Na Gated 1809keV Activity

Leading-Channel Removal Plots
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Figure 10: Deduced half-life of 2°Na vs. number of leading channels removed.
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Higher Order Pile-up Corrections

Rate-Dependent Refinements

&

- Pile-up Time Resolution

* Corrects for pile-up events not resolved (in time) by the pile-up circuitry.

- Trigger-Energy Threshold

* Corrects for pile-up caused by sub threshold energy events.

- Pile-up Detection Energy Threshold

* Corrects for low energy pile-up events missed by the pile-up circuitry.

15



Half-Life Analysis: 2°Na Gated 1809keV Activity

Residual plot

Comparing 1st order pile-up correction to Higher order pile-up correction
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Figure 11: 1st order pile-up correction (left) and Higher order pile-up correction decay curve(right)

obtained from a single run following a gate on the 1809-keV transition in 26

16
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Half-Life Analysis: 2°Na Gated 1809keV Activity

Half-life (s)
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Figure 12: 26Na: 1st order pile-up correction (left) and Higher order pile-up correction (right) of the
deduced Half life versus run number.

17



Half-Life Analysis: 2°Na Gated 1809keV Activity

Leading-Channel Removal Plots
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Figure 13: Deduced half-life of 2°Na vs. number of leading channels removed.

18



Summary and Future Work

© The Half life for the 1809keV activity from 2Na has been determined and was
found to be 71 (avg) = 1.07294 £+ 0.00023s.
2

&

® The results from the higher order pile-up corrections looks promising.

©® Grinyer et al. (2005) measured the high-precision half-life of ?°Na via -counting.
The half-life of 2Na was determined to be 71 = 1.07128 + 0.00025 s.
2

O There is still work to do (~60) on refining the pile-up correction and systematic
uncertainties. Also need to explore summing effects in GRIFFIN.

© Analysis of O superallowed beta decay

19
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Detector Pulse pile-up

Tail Pile-up
Pulse 1 Peak Pile-up

&

Il the pulses are very close in time, the
system will simply record the two
pulses as a single event with a

combined pulse amplitude.

First order pulse pile-up where pulse 2 is
riding on the tail of pulse 1.

- The number of pile-up events depend strongly on the count rate of the
system.
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Detector Pulse pile-up

Common types of Pile-up

&

‘ Post-piled-up ‘

» Post pile-up is defined as the probability that the pile-up is caused
by events arriving after the events of interest has been recorded.

pile-up time interval, 7,

—
A. | (G. F. Grinyer, 2007)

minimum separation time, 74

0
‘\ this is the time that the event of

interest is recorded by the detector.

25
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Detector Pulse pile-up

Common Types of Pile-up
1. Pre-piled-up ‘

&

» The possibility that the event of interest is piled-up by an event that
came before, in a process defined as “pre-pile-up”

Tp
B
Lo |
IIIII I I I
T4 L E
t=0 t (G. E. Grinyer, 2007)
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Rejecting those Cycles with few or zero Counts

Cycle Number vs Time in cycles
]

_ Cydle 43" cycle is incomplete and was

Number removed (required for ALL runs).
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Figure 14: 2-D plot showing the cycle number versus the time in cycles, incomplete cycles were
removed for all runs. 27



Higher Order Pile-up Corrections

Analytical Expressions by (G. F. Grinyer, 2007)

&

P=1—¢ (2707 [gaa® 4 (1 _ gq,)z] 1

P=1—-e¢%(14ax) 2

P =¢, [1 —e (1 + m)} 3

The probability of pile up with a non zero time resolution, CFD and

detection efficiency in 1, 2 and 3 respectively.

Phit-total = % (1 —em (BravT[enT 4 g5(1 - a4)ﬂ?]) 4
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Higher Order Pile-up Corrections

Bin-by-bin pile-up correction

&

1. Deadfraction Correction D i = Dead fraction

N S — — Deadtime is the total period of time
z 1 _ D during which hit detection cannot be
z processed even if they are present.

RATE DEPENDENT

2. Higher Order Pile-up Corrections CORRECTIONS

17 N?,
N.

" (1= D) x (1= Pggotal)
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Higher Order Pile-up Corrections
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Figure 15: The fit of the probability of pile up with a non zero time resolution, trigger energy
threshold and detection efficiency. 30




Detector Pulse pile-up

Trigger Spectra Fit (1809keV)

&
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Detector Pulse pile-up

gE: pile-up, Kvalue < 700

&
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Detector Pulse pile-up

gE: pile-up, Kvalue < 700

&
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1st Order Pile-up Corrections

Step-by-Step Correction

&

1. Deadfraction Correction _ :
D,; = Dead fraction
N N;
T 1 o D Deadtime is the total period of time
1 during which hit detection cannot be
processed even if they are present.

2. 1" Order Pile-up Correction

124 N ] _ -
N = i p_ Pile-up Events
1-F ¢ All Events
77 N?,
N Z — * RATE DEPENDENT CORRECTIONS

- Di)x(1-B)
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ﬁ TRIUMF-ISAC Facility

TRIUMF

« Up to 100 pA, 500 MeV protons from TRIUMF’s main cyclotron are
accelerated onto targets which produce high-intensity secondary
radioactive ion beams by the ISOL technique.
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~ Counting — The 87 Spectrometer
A < S Spocomeir >

One hemisphere of the 8pi Gamma-Ray Spectrometer ~Ihe collection box and lead shiclding wall (yellow) for
at ISAC-IL. the moving tape collector system of the 8pi Spectrometer.

» Spherical array of 20 BGO Compton suppressed HPGe detectors
« ~1% photopeak efficiency at 1.3 MeV

After a decade of operation at ISAC-I, the 8pi Spectrometer was decommissioned
in January 2014 to make way for the new high-efficiency GRIFFIN spectrometer.
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Figure 16: 26Na: Reduced X2 vs run numbers(left) and deduced Half life versus run number (right). A
weighted average of T% =1.07472 £ 0.00023 s is deduced from these data where the uncertainty is

statistical.
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Half-Life Analysis: 2°Na Gated 1809keV Activity

Half-life (s)

Deduced half-life of *Na versus the electronic settings.
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Figure 17: Run 10485: Deduged half-life of 26Na vs. electronic settings
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Exploring pile-up options

Run # 10484: Counts vs. KValue
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Figure 18: Pile option used: 1-D plot showing the counts versus the integration length.
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