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Motivation

* The Standard Model is not complete
e Gravitation? Hierarchy problem? Higgs naturalness problem?

» String theory predicts the existence of the gravitational force carrier — Graviton

* Periodic resonances? Most studies focus on non-periodic resonances



Motivation

* The Standard Model is not complete
e Gravitation? Hierarchy problem? Higgs naturalness problem?

» String theory predicts the existence of the gravitational force carrier — Graviton

* Periodic resonances? Most studies focus on non-periodic resonances

Benchmark Model:
* Clockwork theory is a model-building mechanism to generate fundamental particles

* Clockwork theory suggested graviton with different mass modes and periodic resonances

The full work is recorded at https://cds.cern.ch/record/2754323 (internal only)
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Clockwork theory
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ds? = e3"™(n , dotdr” + w2 dR?)

* Provide a mechanism to generate particles in all ranges of scales.

« With a small interaction scale A, we can leverage discretely to an exponentially large /\

* Live in warped 5D metric
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Clockwork theory

ds? = egkﬂR(ana:“dx” + m2dR?)

Provide a mechanism to generate particles in all ranges of scales.

t
u d ;o ¢ b
Getting top quark from up quark!

With a small interaction scale A, we can leverage discretely to an exponentially large /\

Live in warped 5D metric

A solution to the Hierarchy problem similar to Little String Theory

A solution to the Higgs naturalness problem similar to Large Extra Dimension model(LED) and the
Randall-Sundrum(RS) model



Undetermined parameters k, M., R
ds? = eék”R(nw/dw“daﬁ” + m2dR?)

* k Higgs-curvature is a metric parameter, the “spring constant” for the clockwork model
* R is the cut-off range for the high dimension gravitational potential

* M, fundamental scale related to A, also known as 5D reduced Planck mass



Undetermined parameters k, M., R

ds® = eék”R(nw/dw“daﬁ” + m2dR?)

k Higgs-curvature is a metric parameter, the “spring constant” for the clockwork model
R is the cut-off range for the high dimension gravitational potential

M; fundamental scale related to A, also known as 5D reduced Planck mass

Related by an equation, where M,, is the 4D(3+1) Planck mass.
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* 4D Planck mass M, can be obtained by rewriting Newtonian Gravitational potential

Gmm, mm,

V(T) — T - MpZT'
* Extend the potential to 4+n dimensions
__mima 1
V(T) — petaplin (in 4+n-Dimensions)

* Make consistent with Newtonian gravity, setting cut off range R so that we get 4D potential at
r>>R.

__mmmo 1 1
V(T) — M%Jrn R™ r (in 4+n-Dimension but r>>R)
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Events/1GeV

Clockwork graviton Physics

* Clockwork gravitons are predicted to have different mass modes, each having a different mass and
interaction strength.

2

* Br(G—> vyy)=4% Br(G—>ee)=2% mo=0, mi=kl+—, 'n=123,...
) n R2 ) ) &y Dy
» Search the phase space (k, Ms) by simulating clockwork graviton at dimwlis)
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Events/1GeV

Graviton mass distribution k = 1.2 TeV Graviton mass distribution k=0.7TeV
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Events/1GeV

Graviton mass distribution k = 1.2 TeV Graviton mass distribution k=0.7TeV
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Events/1GeV
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Wide/Narrow gap between peaks!

Oscillation!

Unique frequency!
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Events/1GeV

Graviton mass distribution k = 1.2 TeV Graviton mass distribution k=0.7TeV
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Many Peaks! Oscillation!
Wide/Narrow gap between peaks! Unique frequency!
Different minimum mass! Mass range for analysis!
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Cascade of decay

* G(mass mode 40)>G(26)G(14)
* But the daughter G(26) may also decay to G(2)G(1) : G(26)=>G(1)G(2)
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Cascade of decay

* G(mass mode 40)>G(26)G(14)
* But the daughter G(26) may also decay to G(2)G(1) : G(26)=>G(1)G(2)

* MORE lower-mass gravitons & fewer higher-mass gravitons
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Simulating Physics

Analyzing responses
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From Pythia to Detector responses

* Generating the reconstruction result of the detector.

* Transform/convolution method

* The resolution function for dielectron and diphoton channels are different for ATLAS
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MC Signal+Background example

Eyes exam: can you see the wiggling?
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Searching Routine

Simulating Detector
Responses

Simulating Physics Analyzing Responses
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Fourier Transform analysis

* The oscillating spectrum implies the possibility of using Fourier Transform analysis
* We applied discrete Fourier Transform and studied power spectrum P(T)

* In the power spectrum, we define the peak of the spectrum to be our test statistic for the
hypothesis test

o do (o= R [
V 27T Mmin dm p T

* Background is in appendix



Fourier transform example
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Applying Fourier Transform

Events/1 GeV bins
P (arbitrary units)
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95% LOWER limit plot
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Thanks for listening

Q&A
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Appendix -- k Mc R p = T (e 1)

* 3D Planck mass M, can be obtained by rewriting Newtonian Gravitational potential

V(r) =

Gmm, _ mm,
2
r M,"r

* Fourier transform of 3+n-dimensions gravitational potential

7.z 1 1
V() f A3k ezk-xﬁ X - V(T) = WJ\%TT% rl}m (in 3+n-Dimensions)

* Make consistent with Newtonian gravity, setting cut off range R so that we get 3D potential at
r>>R.

V(T) — n]\}gﬁ% Rln % (in 3+n-Dimension but r>>R)
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Appendix — FT
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Appendix — Cross-section

M, [TeV]
M, [TeV]
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Appendix — Decay Width

decay widths [GeV]
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