Contribution ID: 19 Type: Contributed Oral

Searching for Alpha-Cluster States in 126 Te

Saturday, 18 February 2023 11:15 (15 minutes)

Clustering in nuclei provides an alternative description to their nuclear structure in addition to the Nuclear Shell Model. Although alpha (4 He nucleus) clusters are widely accepted to be essential to the understanding of the structure of light nuclei, such as the Hoyle state in 12 C, it was experimentally observed in heavy nuclei only recently in 212 Po. The observation showed that 212 Po had mixed shell and cluster configurations, where the structure of 212 Po could be explained by an alpha cluster coupled to the doubly-magic 208 Pb core. In particular, the clustering structure resulted in enhanced E1 (electric dipole) transitions from non-natural parity states, which were measured using gamma-ray spectroscopy.

Another recent experiment at INFN Legnaro observed an excess cross section for the parasitic 122 Sn(13 C, 9 Be) 126 Te reaction. Because the fusion-evaporation cross section for this channel was negligible in PACE4 calculations, the 126 Te was likely populated through an alpha transfer reaction which suggests alpha-clustering in its structure. In this experiment gamma rays were detected with the GALILEO array which is composed of 25 Compton-suppressed HPGe detectors while charged particles with particle identification were detected in the EUCLIDES $E-\Delta E$ 4π Si-ball array. Gamma-ray spectroscopy with coincidence techniques, such as particle-particle, particle-gamma, and gamma-gamma, is underway to extract previously unobserved transitions and levels in 126 Te from this data set. Preliminary results from the Legnaro data, together with plans for a future experiment, will be presented and discussed.

Supervisor

Corina Andreoiu

Funding Agency

NSERC

Supervisor Email

caa12@sfu.ca

Your Email

twa73@sfu.ca

Primary authors: ANDREOIU, Corina (Simon Fraser University); WU, Frank (Tongan) (Simon Fraser University); ORTNER, Kevin (Simon Fraser University); SPAGNOLETTI, Pietro (Simon Fraser University)

Presenter: WU, Frank (Tongan) (Simon Fraser University)
Session Classification: February 18 Morning Session

Track Classification: Nuclear Structure