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Quantum Chromodynamics (QCD)

● Theory of the strong interaction between quarks mediated by gluons
● Quantum field theory called a non-abelian gauge theory with symmetry group SU(3)
● Large body of experimental evidence for QCD has been gathered over the years
● Three major properties

○ Color confinement
○ Asymptotic freedom
○ Chiral symmetry breaking
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Deep-Inelastic Scattering (DIS)

● QCD framework → structure of hadrons
● Protons are made out of gluons and quarks 

○ Proven by probing a proton with a virtual photon at high energies
● Deep Inelastic Scattering (DIS) processes
● Bjorken scaling
● Unique points in (𝒙,𝑄2) plane → 3 different reconstruction methods
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Deep-Inelastic Scattering (DIS)

● Radiative corrections
○ Large contributions of initial state radiation from electron expected
○ Electron radiates a 𝛾 before interacting → Energy degraded

● Choice of the reconstruction method determines the size of systematic uncertainty
● Which method is the best and is there a workaround? 𝛾 
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DIS RECONSTRUCTION METHODS

Jet algorithms not needed 
(still can be used)

x more accurate especially at low y

Q^2 very precise

Large parts of phase space 
superior to other methods

No need for precise jet energy 
measurements

Electron Method (EL)

Jacques-Blondel 
Method (JB)

Double Angle 
Method (DA)

Accuracy of x poor for low y

Sensitive to QED radiation

Needs precise jet energy 
measurements

Suffers from same problems as 
electron method
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● Inspiration comes from the structure of the brain
● If our brain is so powerful and efficient → why not try to use that 

framework? 
● Axon = output of a neuron → transmits the signal to other neurons

Neural Networks - General
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Neural Networks - General

● Mapping from  ℝ2 to ℝ1 with transformations in between
● How many nodes do we need?
● Function 𝑓 in the hidden layer applied componentwise
● Supervised learning → minimize prediction and result difference 

(weight matrix 𝐖)
● In case we know true value → compute error
● Neural network is at its best when this error term is minimized 
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Neural Networks - General

● Other half gives:

● Combined:

● Relationship between 𝐲𝐤 and 9 variables
● Gradient descent

● Update 𝐖 based on new observations
● Retrace steps! → computer does it for us
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● Weighting classical DIS reconstructions → using all four of the measured quantities as corrections
● We obtain:

● Splitting of data (80-20)
● Divide data into bins
● Compare classical methods to neural network method
● Parameters:

○ Epochs: 100
○ Batch value: 10 000
○ 𝛼＝10-5

○ Regularization: 10-6

○ Momentum: 0.9

No parameter optimization yet.

Neural Networks - DIS
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● Neutral current DIS events + simulated data of ZEUS Experiment → reconstruct 
four-momentum transferred to the hadronic system

● ZEUS detector
○ 4π solid angle coverage, advanced tracking and Uranium-Scintillator 

calorimeter, solenoid of 1.43 T
○ Recorded 0.5f b −1 data from e ± p collisions at HERA in 1993-2007 at 

various beam energies
○ Simulated and real data is available for analyses

● HERA → 27.5 GeV electron and 920 GeV proton accelerator
● Monte Carlo simulated e+p DIS events that are provided by the ZEUS 

collaboration
○ Color Dipole Model (CDM)

Experiments and Results - ZEUS
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Experiments and Results
Bin Definitions
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Experiments and Results
Q2

Bin 1 Bin 2
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Experiments and Results
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Bin 7 Bin 8
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Experiments and Results
x

Bin 1 Bin 2
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Experiments and Results
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Bin 7 Bin 8
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Bin Entries Resolution of log 𝑄2 Resolution of log 𝑥

1 132 702 NN: 0.026     EL: 0.022
JB: 0.050     DA: 0.027

NN: 0.079     EL: 0.068
JB: 0.085     DA: 0.082

2 166 230 NN: 0.033     EL: 0.031
JB: 0.104     DA: 0.037

NN: 0.081     EL: 0.077
JB: 0.105     DA: 0.091

3 56 988 NN: 0.036     EL: 0.028
JB: 0.091     DA: 0.026

NN: 0.109     EL: 0.115
JB: 0.110     DA: 0.104

4 34 040 NN: 0.032     EL: 0.027
JB: 0.093     DA: 0.031

NN: 0.092     EL: 0.073
JB: 0.090     DA: 0.080

5 13 602 NN: 0.034     EL: 0.026
JB: 0.083     DA: 0.029

NN: 0.095     EL: 0.079
JB: 0.091     DA: 0.088

6 4 830 NN: 0.037     EL: 0.023
JB: 0.077     DA: 0.026

NN: 0.082     EL: 0.068
JB: 0.076     DA: 0.078

7 1 542 NN: 0.045     EL: 0.022
JB: 0.071     DA: 0.027

NN: 0.080     EL: 0.059
JB: 0.070     DA: 0.072

8 204 NN: 0.051     EL: 0.022
JB: 0.079     DA: 0.018

NN: 0.075     EL: 0.054
JB: 0.053     DA: 0.050



Summary and Further Research

● Neural networks can be used for DIS kinematics 
reconstruction

● ZEUS Experiment simulation data used for 𝒙 and 𝑄2 
reconstruction

● Appropriate parameter optimization and 
selection of the training set → DNNs expected 
to sufficiently outperform classical 
reconstruction methods on most of the 
kinematic range considered

● Collaborators performed similar analysis with 
ECCE data

● Results promising and ready for EIC studies → 
EPIC simulation campaign 18
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● Example 1:
○ Inverse problem in heavy-ion collisions (HIC)
○ High energies → LQCD predicts that the transition between QGP and hadron resonance gas is a 

smooth crossover
○ Supervised CNN (Du et al., 2020b; Pang et al., 2018), point cloud networks (Steinheimer et al., 2019), 

and unsupervised AE (Wang et al., 2020) → trained to identify QCD phase transition types using final 
state hadrons

● Example 2:
○ Interaction between bottom and anti-bottom quarks in QGP → modeled as a heavy quark potential 

→ variational function form represented by deep neural networks (Shi et al., 2021)
● Example 3:

○ Collision-based experiments → events often categorized by event type for analysis
○ Selection typically computationally expensive in traditional analyses
○ Common task in scintillator detectors in low-energy experiments → discriminate between the 

neutron and γ signals
○ Neural network analysis of pulse shapes → effectively discriminate between these signals (Doucet et 

al., 2020)

Neural Networks - Physics Examples
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● Epochs :
○ Total number of iterations training the data set in one cycle for training the machine learning model

● Batch value :
○ Number of samples to go through before updating the model parameters

● Learning rate :
○ Measure of how much the weights form the neural network are updated according to the estimated 

error
● Regularization parameter :

○ Parameters that control the loss function, so that it is not over-fitted
● Momentum : 

○ Adds momentum factor times the weight delta from the previous iteration to back-propagation, adds 
a boost to the weight change, which makes training faster

○ In case of oscillating weights, momentum dampens oscillations

Neural Networks - Parameters
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Layers in NN for DIS
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Experiments and Results
Q2

Bin 3 Bin 4
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Experiments and Results
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Experiments and Results
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DNN in ECCE Simulations
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DNN in ECCE Simulations
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● Inclusion of QED and higher order QCD radiative effects using the HERACLES 4.6.6 package with DJANGOH 1.6 
interface and the ARIADNE 4.12 and LEPTO 6.5.1 packages for the simulation of the parton cascade

● For both samples the same set of kinematic cuts was applied during the generation
● Same set of PDFs were used, CTEQ5D
● Same hadronisation settings were used to model the hadronisation with the Pythia6 program 
● The essential difference between the two samples is the way the higher order corrections are partially 

modelled with the corresponding algorithms (QCD cascades). Namely, the LEPTO MCEG utilises the parton 
shower approach, while ARIADNE implements a colordipole model. Accordingly, we label the data-sets 
produced by the LEPTO generator as “CDM” data sets and those with ARIADNE as “MEPS” data sets

● In the phase-space region at low x and very low inelasticity y, the QED predictions from the Monte Carlo 
simulations are not reliable because of a limit of higher orders in the calculations

● To ensure optimal electron identification and electron energy resolution, similar to the previous physics 
analyses, a kinematic cut on y is used

Monte Carlo Details
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Monte Carlo Details
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● Energy-longitudinal momentum balance: To suppress photoproduction and beam-gas interaction 
background events and imperfect Monte Carlo simulations of those, restrictions are put on the 
energy-longitudinal momentum balance. This quantity is defined as:

○ where the final summation index runs over all energy deposits in the detector
● Missing transverse energy: To remove beam-related background and cosmic-ray events, a cut on the 

missing energy is imposed. P_T,miss/√ET < 2.5 GeV^1/2, where E_T is the total transverse energy in the CAL 
and P_T,miss is the missing transverse momentum, the transverse component of the vector sum of the 
hadronic final state and scattered electron momenta

More DIS Variables
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Standard Model of Particle Physics
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Deep-Inelastic Scattering (DIS)

● Straightforward to measure 𝐸, 𝐹 and 𝜗 → 𝛾 more involved
● Quality of detector affects measurement accuracy
● Unique points in (𝒙,𝑄2) plane → 6 different reconstruction methods
● Electron Method

○ Combining 𝐸 and 𝜗 gives unique point in (𝒙,𝑄2)
○ For 𝐸 of a few GeV → large uncertainty in 𝒙 reconstruction

● Jacques-Blondel Method
○ 𝐹 and 𝛾

● Double-Angle Method
○ Use electron and final state hadron flow
○ Measure 𝐸 of both → 𝜗 and 𝛾
○ Determination of 𝛾 gives remarkably good results 

■ Angles independent of 𝐸 fluctuations of jet (can be shown)
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Neural Networks - General

● Powerful mathematical model combining linear algebra, biology and 
statistics to solve a problem in a unique way

● Takes a given amount of inputs and then calculates a specified number 
of outputs aimed at targeting the actual result

● Problems such as pattern recognition, linear classification, data fitting 
and more can all be conquered with a neural network

● Supervised
○ Given a collection of input data and a collection of output data

● Unsupervised
○ We do not have output data

● Neural networks thrive at adaptive learning
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Neural Networks - General

● Layers are represented as vectors 
● All observations → each layer is a matrix
● Output matrix of neural network 𝐓, 𝐘 is a prediction of 𝐓 based on the inputs 
● Supervised learning → minimize 𝐓 and 𝐘 difference (weight matrix 𝐖) 
● But do we really need neural networks for this?
● 𝐖 maps from 𝐗 to 𝐘 such that 𝐓＝𝐖𝐗＋𝐛
● We like linear functions → [𝐖⎪𝐛] → 𝐓＝[𝐖⎪𝐛] [𝐗 1]T → 𝐓＝𝐖𝐗
● Pseudoinverse Ŵ＝𝐓𝐕𝚺-1𝐔𝐓 → compute 𝐘＝Ŵ𝐗
● Compare 𝐘 and 𝐓 → linear algebra method
● Linear relationship between 𝐓 and 𝐗
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