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.\) Quantum Chromodynamics (QCO)

Theory of the strong interaction between quarks mediated by gluons
Quantum field theory called a non-abelian gauge theory with symmetry group SU(3)

Large body of experimental evidence for QCD has been gathered over the years
Three major properties

o  Color confinement

Meson

o  Asymptotic freedom @
o  Chiral symmetry breaking
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Y Deep-Inelostic Scattering (DI5)

e QCD framework — structure of hadrons

e Protons are made out of gluons and quarks
o  Proven by probing a proton with a virtual photon at high energies
e Deep Inelastic Scattering (DIS) processes
e Bjorken scaling
e Unique points in (x,0?) plane — 3 different reconstruction methods
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Y Deep-Inelostic Scattering (DI5)

Radiative corrections
o  Large contributions of initial state radiation from electron expected
o  Electron radiates a y before interacting — Energy degraded
Choice of the reconstruction method determines the size of systematic uncertainty
Which method is the best and is there a workaround?




015 RECONSTRUCTION METHODS

Accuracy of x poor for low y

Electron Method (EL) Q"2 very precise

Sensitive to QED radiation

Jet algorithms not needed
Jucques-Blondel (still can be used) Needs precise jet energy
Method (JB) measurements
X more accurate especially at low y

Large parts of phase space

Double Angle L IR TR Suffers from same problems as

Method (DA) - electron method
No need for precise jet energy

measurements




,\) Neural Networks - General O
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Inspiration comes from the structure of the brain

‘ e If our brain is so powerful and efficient — why not try to use that
framework?

e Axon = output of a neuron — transmits the signal to other neurons



Neural Networks - General

Mapping from R? to R' with transformations in between
How many nodes do we need?

Function fin the hidden layer applied componentwise
Supervised learning — minimize prediction and result difference Xzi \
(weight matrix W) '

In case we know true value — compute error E(W, W ) = Zlelltk—yk||2

Neural network is at its best when this error term is minimized :

S1k Wy W12 81k, W1 T+ W1aTop
[32};] > f( [wzl W [;(;é}i]) > [32k] = f( W Ty, + WerToy )
s3k w31 w32 83k W31 T} -+ W32T 9}




.\) Neural Netwaorks - General O

Other half gives:
Y= W 181 + W2S9 + W 3S3;,
Combined:

Y, = Wif(wn@y +winop)+ Waf (Wa Ty, + werTop)+ W3 f(wai 2y, + wasToy)

Relationship betweeny, and 9 variables
Gradient descent

~NEW _ ~0OLD ___OE

Update W based on new observations
Retrace steps! — computer does it for us



_ ,\) Neural Networks - General O

Other half gives:
Yy = W18y + WaSop, + W3S3y,
Combined:

Y, = Wif(wn@y +winop)+ Waf (Wa Ty, + werTop)+ W3 f(wai 2y, + wasToy)

Relationship betweeny, and 9 variables
Gradient descent

~NEW _ QLD OFE
Wi; =W —Oo———
OwQED

Update W based on new observations
Retrace steps! — computer does it for us




.\) Neural Netwaorks - DIS O

e Weighting classical DIS reconstructions — using all four of the measured quantities as corrections
e We obtain: 2 2 9 9 /
v =A@(Qp.Q7p@p )+ Le2(AQ2Eef)+ H2(AQ2PTH,0 1)

Tty =Ae(TEr,TyBTpa)t+ L:I:(AazaQ?\rNaEéaee)_*' H (A, PTH,0F)
Splitting of data (80-20)
Divide data into bins
Compare classical methods to neural network method
Parameters: 1
o  Epochs: 100
Batch value: 10 000
a=10"
Regularization: 10
Momentum: 0.9

o O O O
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No parameter optimization yet.

random value minimum w 10



Experiments and Results - ZEUS

Neutral current DIS events + simulated data of ZEUS Experiment — reconstruct
four-momentum transferred to the hadronic system
ZEUS detector
o  4msolid angle coverage, advanced tracking and Uranium-Scintillator
calorimeter, solenoid of 143 T
o  Recorded 0.5f b -1 data from e £ p collisions at HERA in 1993-2007 at
various beam energies
o  Simulated and real data is available for analyses
HERA — 275 GeV electron and 920 GeV proton accelerator
Monte Carlo simulated e+p DIS events that are provided by the ZEUS
collaboration
o  Color Dipole Model (CDM)

1




Experiments and Results

o
Bin Definitions

NE sl @ Sixoulatod events P ‘ Bin l Q* (GeV?) I * ‘

£ wof et 1 | 120-160 | 0.0024-0.010

Y o A 2 160 - 320 | 0.0024 - 0.010

= 0 o BhS 3 320 - 640 0.01-0.05
| A 4 | 640-1280 | 0.01-0.05
P 5 | 1280-2560 | 0.025- 0.150
28] ol 6 2560 - 5120 0.05-0.25
B3 7 | 5120-10240 | 0.06- 0.40
24| i 8 | 10240 - 20480 0.10 - 0.60
20 y Table: Kinematic bins in 2 and Q?
Y50 2s 20 —is —io ‘l[é;.v used for performance comparisons.

The bins were chosen to be close to

Figure: Distribution of (x, Q?) for the bins used in the analyses of

the training set and boundaries of hadronic final state in the ZEUS

bins. experiment.
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Experiments and Results
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Experiments and Results
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Experiments and Results
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arbitrary units
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Bin Entries | Resolution of log ¢? Resolution of log x
NN: 0.026  EL: 0.022 NN: 0.079 EL: 0.068

1 132702 JB:0.050 DA: 0.027 JB:0.085 DA:0.082
NN:0.033  EL: 0.031 NN: 0.081 EL: 0.077

2 166 230 JB: 0104 DA: 0.037 JB:0.105 DA: 0.091
NN: 0.036 EL:0.028 NN: 0109 EL: 0.115

3 56988 JB: 0.091 DA: 0.026 JB: 0110 DA: 0.104
NN:0.032  EL: 0.027 NN: 0.092 EL: 0.073

4 34 040 JB:0.093 DA: 0.031 JB:0.090 DA: 0.080
5 13 602 NN: 0.034 EL: 0.026 NN: 0.095 EL: 0.079
JB:0.083 DA:0.029 JB:0.091 DA:0.088
6 4 830 NN: 0.037 EL:0.023 NN: 0.082 EL: 0.068
JB:0.077 DA:0.026 JB:0.076 DA: 0.078
7 1542 NN: 0.045 EL: 0.022 NN: 0.080 EL: 0.059
JB: 0.071 DA:0.027 JB:0.070 DA: 0.072

8 204 NN: 0.051 EL:0.022 NN: 0.075 EL:0.054
JB: 0.079 DA:0.018 JB: 0.053 DA: 0.050
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Neural networks can be used for DIS kinematics
reconstruction

ZEUS Experiment simulation data used for x and Q?
reconstruction

Appropriate parameter optimization and
selection of the training set — DNNs expected
to sufficiently outperform classical
reconstruction methods on most of the
kinematic range considered

Collaborators performed similar analysis with
ECCE data

Results promising and ready for EIC studies —
EPIC simulation campaign 18
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Neural Netwaorks - Physics Examples

Example 1:
o Inverse problem in heavy-ion collisions (HIC)
o  High energies — LQCD predicts that the transition between QGP and hadron resonance gasis a
smooth crossover
o  Supervised CNN (Du et al,, 2020b; Pang et al, 2018), point cloud networks (Steinheimer et al,, 2019),
and unsupervised AE (Wang et al,, 2020) — trained to identify QCD phase transition types using final
state hadrons
Example 2:
o Interaction between bottom and anti-bottom quarks in QGP — modeled as a heavy quark potential
— variational function form represented by deep neural networks (Shi et al,, 2021)
Example 3:
o  Collision-based experiments — events often categorized by event type for analysis
o  Selection typically computationally expensive in traditional analyses
o  Common task in scintillator detectors in low-energy experiments — discriminate between the
neutron and y signals
o Neural network analysis of pulse shapes — effectively discriminate between these signals (Doucet et

al, 2020)
arXiv: 2112.02309
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Neural Networks - Parameters

Epochs :
o  Total number of iterations training the data set in one cycle for training the machine learning model
Batch value :
o Number of samples to go through before updating the model parameters
Learning rate :
o  Measure of how much the weights form the neural network are updated according to the estimated
error
Regularization parameter :
o  Parameters that control the loss function, so that it is not over-fitted
Momentum :
o  Adds momentum factor times the weight delta from the previous iteration to back-propagation, adds
a boost to the weight change, which makes training faster
o Incase of oscillating weights, momentum dampens oscillations

21
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Layers in NN for DIS

input_2 input: | [(None, 2)] input_3 input: [(None, 2)]
InputLayer | output: | [(None, 2)] InputLayer | output: | [(None, 2)]
dense_7 | input: (None, 2 input_1 input: | [(None, 3)] dense_l4 | input: (None, 2)

Dense | output: | (None, 100) InputLayer | output: | [(None, 3)] Dense output: | (None, 100)
dense_8 | input: | (None, 100) dense | input: (None, 3) dense_15 | input: | (None, 100)
Dense | output: | (None, 100) Dense | output: | (None, 100) Dense output: | (None, 100)
dense_9 | input: | (None, 100) dense_1 | input: | (None, 100) dense_16 | input: | (None, 100)
Dense | output: | (None, 100) Dense | output: | (None, 100) Dense output: | (None, 100)
dense_10 | input: | (None, 100) dense_2 | input: | (None, 100) dense_17 | input: | (None, 100)
Dense output: | (None, 100) Dense | output: | (None, 100) Dense output: | (None, 100)
dense_l11 | input: | (None, 100) dense_3 | input: | (None, 100) dense_18 | input: | (None, 100)
Dense output: | (None, 100) Dense output: | (None, 100) Dense output: | (None, 100)
dense_12 | input: | (None, 100) dense_5 | input: | (None, 100) dense_19 | input: | (None, 100)
Dense output: [ (None, 100) Dense output: | (None, 100) Dense output: | (None, 100)
dense_13 | input: | (None, 100) dense_6 | input: | (None, 100) dense_20 | input: | (None, 100)
Dense output: (None, 1) Dense output: (None, 1) Dense output: (None, 1)

e

|

/

add

input: | [(None, 1), (None, 1), (None, 1)]

Add

output:

(None, 1)
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arbitrary units
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arbitrary units
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Experiments and Results
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ONN in ECCE Simulations
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Monte Carlo Details

Inclusion of QED and higher order QCD radiative effects using the HERACLES 4.6.6 package with DJANGOH 1.6
interface and the ARIADNE 4.12 and LEPTO 6.5.1 packages for the simulation of the parton cascade

For both samples the same set of kinematic cuts was applied during the generation

Same set of PDFs were used, CTEQ5D

Same hadronisation settings were used to model the hadronisation with the Pythiaé program

The essential difference between the two samples is the way the higher order corrections are partially
modelled with the corresponding algorithms (QCD cascades). Namely, the LEPTO MCEG utilises the parton
shower approach, while ARIADNE implements a colordipole model. Accordingly, we label the data-sets
produced by the LEPTO generator as “CDM” data sets and those with ARIADNE as “MEPS” data sets

In the phase-space region at low x and very low inelasticity y, the QED predictions from the Monte Carlo
simulations are not reliable because of a limit of higher orders in the calculations

To ensure optimal electron identification and electron energy resolution, similar to the previous physics
analyses, a kinematic cut ony is used
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Evtake_iwant: error code

Mc_x: Bjorken x (from initial and final leptons)
Mc_y: Bjorken y (from initial and final leptons)
Mc_g2: Bjorken Q2 (from initial and final leptons)
Mc_x_cr: x (from exchanged photon)

Mc_q2_cr: Q2 (from exchanged photon)

Sierror: Sinistra error code (0=0K)

Sincand: Number of candidates

Siprob: Electron Probability

Sipos: CAL+HES+SRTD position

Sipt: Pt calculated from SiPos

Sidca: Distance of Closest Approach

Sitrkp: Momentum of the track

Siein: Electron energy in Cone

Sienin: Energy in Cone not from electron

Zvix: vertex z (VCTVTX V(3) or ZTVTXPRM V(3)); @ if no vertex
Sith: Theta calculated from SiPos

Siecorr: Corrected energy from emEnergyCorrection5. fpp

Siecorr[i][e] =
FCAL: Electron energy corrected using dead material map
BCAL: Electron energy corrected using dead material map
RCAL: Electron energy corrected for nonuniformities
Siecorr[i][1] =
FCAL: same as Siecorr[i][0]
BCAL: Electron energy corr. for dead material and nonuniformities (new)
RCAL: Siecorr[i][0] also corrected for dead material
Siecorr[il[2] =
FCAL: Siecorr[i][1] also corrected for nonuniformities
BCAL: Siecorr[i][0] also corrected for nonuniformities (old)
RCAL: same as Siecorr[i][1]
e Sizuhmom: Hadronic 4-momentum (Zufos)
e Sicchmom: Hadronic 4-momentum (CorandCut)
e Siccempz: E-Pz from CorAndCut
* Sixel: x Bjorken calculated with electron method
e Siq2el: virtuality Q2 calculated with electron method
e Siyel: inelasticity y calculated with electron method
e Sixjb: x Bjorken calculated with double-angle method based on zufos
e Sig2jb: virtuality Q2 calculated with double-angle method based on zufos
e Siyjb: inelasticity y calculated with double-angle method based on zufos
« Sixda: x Bjorken calculated with double-angle method based on zufos
e Siq2da: virtuality Q2 calculated with double-angle method based on zufos
e Siyda:inelasticity y calculated with double-angle method based on zufos
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More DIS Variables

Energy-longitudinal momentum balance: To suppress photoproduction and beam-gas interaction
background events and imperfect Monte Carlo simulations of those, restrictions are put on the
energy-longitudinal momentum balance. This quantity is defined as:

6=01+6g=(Er—Py)+(Eg—PzH)=)_ (Fi— Pz

o  where the final summation index runs over all energy deposits in the detector
Missing transverse energy: To remove beam-related background and cosmic-ray events, a cut on the
missing energy is imposed. P_T,miss/A/ET < 2.5 GeV/*1/2, where E_T is the total transverse energy in the CAL
and P_T,miss is the missing transverse momentum, the transverse component of the vector sum of the
hadronic final state and scattered electron momenta
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Standard Model of Particle Physics

three generations of matter interactions | force carriers
(fermions) (bosons)

mass =2.2 MeV/c2 =1.28 GeV/c? =173.1 GeV/c2 0 =124.97 GeV/c2
charge % 2 2% 0 g 0
spin % l‘,li % C/ 10 t/’ 1 ‘ 0 H
| up J charm J top J L gluon higgs
=4.7 MeV/c2 =96 MeV/c2 =4.18 GeV/c2 0 N
=14 -4 -4 0 i
@ |9 (O | @
down strange bottom photon
. y
=0.511 MeV/c2 =105.66 MeV/c2 =1.7768 GeV/c2 =91.19 GeV/c2 m
-1 -1 -1 0 i >
- @ |0 || @ || @ |3
electron mw tau J | Z boson 8 027
2] — M3
Z <1.0 eV/c2 <0.17 MeV/c2 <18.2 MeV/c? =80.433 GeV/c2 UJ (@]
O o 0 0 +1 o
= 1= Ve % V|-l % VT& 1 J o QO:
Ll electr_on muon tau_ i (&)
-1 | neutrino neutrino neutrino J LR oY
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o & -
. Deep-Inelostic Scattering (DIS)

scattered lepton

incoming lepton

Straightforward to measure E, F and ¢ — y more involved virtual photofy

* I
e Quality of detector affects measurement accuracy -
e Unique points in (x,0? plane — 6 different reconstruction methods =
e Electron Method a F i ud
o  Combining E and # gives unique point in (x,0? tzrgetnucleon I

o  ForE of a few GeV — large uncertainty in x reconstruction WU LLRECELUR

e Jacques-Blondel Method
o Fandy
e Double-Angle Method
o  Use electron and final state hadron flow
o  Measure E of both — ¢ and y
o  Determination of y gives remarkably good results
m  Anglesindependent of E fluctuations of jet (can be shown)




Neural Networks - General

Powerful mathematical model combining linear algebra, biology and

statistics to solve a problem in a unique way

Takes a given amount of inputs and then calculates a specified number

of outputs aimed at targeting the actual result

Problems such as pattern recognition, linear classification, data fitting
and more can all be conquered with a neural network

Supervised

o  Given a collection of input data and a collection of output data

Unsupervised
o  We do not have output data
Neural networks thrive at adaptive learning

NEURAL NETWORK
ARCHITECTURE TYPES

PERCEPTRON NETWORK RECURRENT NEURAL
MULTI LAYER PERCEPTRON NETWORK

LSTM RECURRENT
NEURAL NETWORK HOPFIELD NETWORK BOLTZMANN MACHINE

@ mpur o HIDDEN UNIT @ BACKFED INPUT UNIT
@ OuUTPUTUNIT (A FEEDBACK WITH MEMORY UNIT A PROBABILISTIC HIDDEN UNIT
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Neural Networks - General '
X, !

Layers are represented as vectors ' i
All observations — each layer is a matrix "‘\ 4
Output matrix of neural network T, Y is a prediction of T based on the inputs . ‘—»
Supervised learning — minimize T and Y difference (weight matrix W) .' __—
But do we really need neural networks for this? X
W maps from X to Y such that T=WX+b 2

Pseudoinverse W=TVZ'UT — compute Y=WX
Compare Y and T — linear algebra method
Linear relationship between T and X

We like linear functions — [W|b] — T=[W|b] [X1]" - T=WX l



