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Supernova Neutrinos in SNO+

L Introduction

L SNO+

Detector

Sudbury Neutrino Observatory +
e 2km underground in SNOLAB facility
® inner acrylic vessel with 12 m diameter, viewed

by 9362 photomultiplier tubes (PMTs)
mounted onto a PMT support structure (PSUP)

e external volume of 7000 tonnes of ultra-pure
water (UPW) shielding the AV from the PSUP
and cavity

Figure: Artist rendering of
the SNO+ detector
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https://snoplus.phy.queensu.ca/about.html
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- Introduction

L SNO+

Phases

Water Phase

905 tonnes of UPW
May 2017 — July 2019
Results include ®B solar neutrino flux, neutron detection, calibration

Scintillator Phase

780 tonnes of linear alkylbenzene (LAB)
Doped with fluor 2,5-diphenyloxazole (PPO) at a concentration of 2.2 g/L
Began in April 2022, in progress

Te Loading Phase

Loading the LAB with '3°Te
Development in progress
Measuring lifetime of 238 decay and the search for 0v323
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- Introduction

L SNO+

Physics Goals

@ The search for neutrinoless double beta decay, Ov33;
® Geoneutrino emissions;

© Oscillation of reactor anti-neutrinos;

O Low energy solar neutrino flux and spectral shape;
© Sensitivity to supernova neutrinos;

... and many more exotic physics topics.

[Albanese et al., 2021]
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- Introduction

L Supernova Neutrinos

Core-Collapse Supernovae

Onion-shell structure of pre-collapse star

H
He

Si
Fe

Figure: [Janka et al., 2012]
® The stellar core mass passes the Chandrasekhar limit, ~ 1.4Mg
[Woosley et al., 2002]

® Exceeding this, the radiation and degeneracy pressure are no longer
sufficient to balance the gravitational force

® £~ 10%erg is released; most of it in the form of neutrinos
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L Supernova Neutrinos

Neutrino Emission
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® A neutrino-sphere is created
when v diffusion time > time of
free fall collapse
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Figure: Neutrino luminosity and energy
for an 18 M, progenitor star.
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L Supernova Neutrinos

Neutrino Emission
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¢ Neutrinos of all flavours
continue to be produced
through accretion and cooling
phases

® The emission occurs over
O(10s), and has the strongest
overall signal in the ve
luminosity
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Figure: Neutrino luminosity and energy
for an 18 M, progenitor star.
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- Introduction

L Supernova Neutrinos

What Can be Learned

Supernova Physics

¢ Neutrino absorption via inverse beta decays contributes energy
believed to 'revive’ the shock-wave, which stalls at the accretion
phase [Bethe and Wilson, 1985]

e Sites for nucleosynthesis and the rapid neutron capture responsible
for heavy element production [Arcones and Thielemann, 2012]

Neutrino Physics

® More detailed knowledge on neutrino oscillations through dense
matter and neutrino self interactions and their collective effects on
the flux spectra [Duan et al., 2006]
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LDetection in SNO+

Detection Channels

Past Detection

The only previous confirmed detection of supernova neutrinos came with SN1987A, which
generated 24 total events observed in three different detectors.’

Figure: Inverse beta decay (IBD, top left), neutral current neutrino-lepton
scattering (top middle), and charged current neutrino-electron scattering (top right
and bottom).

'[Hirata et al., 1987], [Bionta et al., 1987], and [Alexeyev et al., 1988] /26
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LDetection in SNO+

L Internal Volume

Simulated Scintillator Signal

Interaction Channel # of Events
vy +p—=uvx+p 429.1+£12.0
Ved+p—n+er 194.74+1.0
Ve +2C 2B+ e" 7.0+0.7
ve+2C " N+e~ 27403
vx +12C =2 C*(15.1MeV) + v, 43.848.7
vy +2C =" Cor "B+ X 2.4+0.5
Ve/Ve + € — Ve/Ue+ €7 13.1

Table: Predicted event rates for 780 tonnes of LAB+PPO (no flavour
changing mechanisms included). Adapted from [Andringa et al., 2015].

Detection potential is based upon a supernova at d = 10 kpc from Earth which releases
3 x 10%erg of binding energy evenly among all six neutrino flavours and types. Mean energies
are (E,,) = 12MeV, (E,,) = 15, and (E,,) = 18 MeV. [Andringa et al., 2015]
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L Internal Volume

Simulated Scintillator Signal
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Figure: Time integrated
neutrino-proton scattering energy
distribution in the first second of a
supernova.

[Andringa et al., 2015]
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LDetection in SNO+

L Internal Volume

SuperNova Early Warning System

® Increases the sensitivity to faint or distant supernovae and the alert
confidence; coincident signals may allow for triangulation to the
direction of the source

® SNEWS 2.0: lower thresholds, integrated multi-messenger approach,
pre-core-collapse alert (full details in [Al Kharusi et al., 2021])
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Figure: Multi-messenger signals before and after collapse of a 17 Mg progenitor
star. [Al Kharusi et al., 2021]
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L External Volume

Simulated Water Signal

¢ Volume of UPW between the PSUP and
the AV acts as an additional water
Cherenkov detector (2.12 kT)

¢ Sensitive to inverse beta decay (IBD)
and elastic scattering off of electrons

Ue+p—e +n
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e Scattered electrons are sensitive to the
Figure: Cross sections for potential incoming neutrino direction, and could
supernova neutrino interaction potentially be used for obtaining
channels. [Scholberg, 2011] directional information that is difficult
in scintillator
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L External Volume

Simulated Water Signal
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Truth (MC) event counts for the external volume (EV) of SNO+ for the first
second of a supernova at d = 10 kpc from Earth. Only elastic electron
scattering (left) and IBD (right) events were simulated in this case (IBD
events were only generated from 7. interactions).
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L External Volume

Water Pointing
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e Total of 60 supernova
simulations at
d =10 kpcfora2stime
window

¢ Includes only the
electron elastic
scattering events
(induced by all flavours)
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L External Volume

Water Pointing

‘Forward’ Event
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Forward peaking events have
reconstructed directions
aligned with the supernova
origin direction, pointing
away from the source.

Figure: Angular distribution of the
reconstructed events in the SNO+ EV.
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LDetection in SNO+

L External Volume

Water Pointing

‘Backward’ Event
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Figure: Angular distribution of the
reconstructed events in the SNO+ EV.

This population of events is unexpected (and not observed in the solar pointing in
SNO+ water phase) and still under investigation.
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Conclusion

Now in full scintillator phase, SNO+ has
the capability to be sensitive to
supernova neutrinos through multiple

SNG Br i channels.

August 9, 2022

Neutral current neutrino-proton
scattering could measure the flux of vy.

The external volume of water has the
potential to act as a secondary
Cherenkov detector to quickly estimate
the direction of an incoming supernova
event.
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Questions? Comments?
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LSupport Slides

Muon Flux

The muon rate for SNOLab is measured at 0.286 + 0.009 u/m?/day for
6010 m.w.e. of shielding. [Aharmim et al., 2009]
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Figure: [Gdmez-Cadenas et al.,, 2011]
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isotopes capable of 2v33 decay.
[Albanese et al., 2021]

22/26



Supernova Neutrinos in SNO+
LSuppcbrt Slides

Chandrasekhar Limit

Mc, = 5.83Y2 (1)

where Y is the number density of electrons relative to the total nucleon
number density,

— ne
Ye = oNa' (2)

For Ye = 0.50, Mc, = 1.457M. As the number of electrons is depleted in
the core, the Chandrasekhar mass limit decreases accordingly.
[Woosley et al., 2002]
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Neutrino Generation

© Electron Capture: e~ + p — n+ ve; emitted neutrino has a
characteristic energy, and a recoil is caused in the daughter atom
with characteristic momentum. Daughter atom will de-excited into
the ground state by a gamma ray or internal conversion.

© Beta Minus Decay: n — p + e~ + i; radioactive decay of a neutron
which emits a beta particle and an electron anti-neutrino.

© Weak Process Pair Annihilation: et + e~ — v + 7; occurs in the
high density region of neutrinos trapped by the in-fall of matter in
the accretion phase, where thermal photons create the
electron-positron pairs.
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LSuppcbrt Slides

Neutrino Emission Epochs

Epoch Duration Dominant Emission
Pre-supernova days Ve
Collapse < 50ms Ve
Accretion ~ 100 ms (ONeMg core) vx < U < Ve

~ 200-700 ms (Fe core) vy < Up < Ve
Cooling ~10s all flavours

Table: Summary of neutrino emission during different supernova phases. Table
adapted from [Horiuchi and Kneller, 2018].

25/26



Supernova Neutrinos in SNO+

LSuppcbrt Slides

SNEWS Detector Types

Type Material Capability Flavour

Energy Timing  Pointing

Scintillator CH true true false Ve
Water Cherenkov H,O true true true Nte
Heavy Water (NC) D,O false true false Ve
Heavy Water (CC) D,O true true true Ve, Ve
Liquid Argon Ar true true true Ve
High Z/Neutron Pb, Fe true true false all
Radio-Chemical 3¢, %7, Ga false false false Ve

Table: Types of supernova neutrino detectors and their capabilities. Table adapted
from [Pietro et al., 2004].
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