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Introduction
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Detector

Figure: Artist rendering ofthe SNO+ detector

Sudbury Neutrino Observatory +
• 2km underground in SNOLAB facility
• inner acrylic vessel with 12 m diameter, viewedby 9362 photomultiplier tubes (PMTs)mounted onto a PMT support structure (PSUP)
• external volume of 7000 tonnes of ultra-purewater (UPW) shielding the AV from the PSUPand cavity
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Phases

Water Phase
905 tonnes of UPWMay 2017 — July 2019Results include 8B solar neutrino flux, neutron detection, calibration
Scintillator Phase
780 tonnes of linear alkylbenzene (LAB)Doped with fluor 2,5-diphenyloxazole (PPO) at a concentration of 2.2 g/LBegan in April 2022, in progress
Te Loading Phase

Loading the LAB with 130TeDevelopment in progressMeasuring lifetime of 2νββ decay and the search for 0νββ
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Physics Goals

1 The search for neutrinoless double beta decay, 0νββ;
2 Geoneutrino emissions;
3 Oscillation of reactor anti-neutrinos;
4 Low energy solar neutrino flux and spectral shape;
5 Sensitivity to supernova neutrinos;

... and many more exotic physics topics.

[Albanese et al., 2021]
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Core-Collapse Supernovae

Figure: [Janka et al., 2012]
• The stellar core mass passes the Chandrasekhar limit, ≈ 1.4M⊙[Woosley et al., 2002]
• Exceeding this, the radiation and degeneracy pressure are no longersufficient to balance the gravitational force
• E ≈ 1053erg is released; most of it in the form of neutrinos

5 / 26



Supernova Neutrinos in SNO+

Introduction

Supernova Neutrinos

Neutrino Emission

Figure: Neutrino luminosity and energyfor an 18M⊙ progenitor star.

• A neutrino-sphere is createdwhen ν diffusion time > time offree fall collapse
• As the outward shock-wavecrosses the neutrino-spherethere is a burst of νe

Bounce
When the core reaches nuclear density, andneutron degeneracy pressure suddenly stallsthe collapse, resulting in an outwardpropagating shock-wave.
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Neutrino Emission

Figure: Neutrino luminosity and energyfor an 18M⊙ progenitor star.

• Neutrinos of all flavourscontinue to be producedthrough accretion and coolingphases
• The emission occurs over

O(10s), and has the strongestoverall signal in the νeluminosity
• Energy range ≈ 10-20 MeV
• Eνµ/τ

> Eν̄e > Eνe
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What Can be Learned

Supernova Physics

• Neutrino absorption via inverse beta decays contributes energybelieved to ’revive’ the shock-wave, which stalls at the accretionphase [Bethe and Wilson, 1985]
• Sites for nucleosynthesis and the rapid neutron capture responsiblefor heavy element production [Arcones and Thielemann, 2012]

Neutrino Physics

• More detailed knowledge on neutrino oscillations through densematter and neutrino self interactions and their collective effects onthe flux spectra [Duan et al., 2006]
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Detection in SNO+

Detection Channels
Past Detection
The only previous confirmed detection of supernova neutrinos came with SN1987A, whichgenerated 24 total events observed in three different detectors.1

Figure: Inverse beta decay (IBD, top left), neutral current neutrino-leptonscattering (top middle), and charged current neutrino-electron scattering (top rightand bottom).
1[Hirata et al., 1987], [Bionta et al., 1987], and [Alexeyev et al., 1988]
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Internal Volume

Simulated Scintillator Signal

Interaction Channel # of Events
νx + p → νx + p 429.1±12.0
ν̄e + p → n + e+ 194.7±1.0
ν̄e +12 C →12 B + e+ 7.0±0.7
νe +12 C →12 N + e− 2.7±0.3
νx +12 C →12 C∗(15.1MeV) + ν′

x 43.8±8.7
νx +12 C →11 C or 11B + X 2.4±0.5
νe/ν̄e + e− → νe/ν̄e + e− 13.1

Table: Predicted event rates for 780 tonnes of LAB+PPO (no flavourchanging mechanisms included). Adapted from [Andringa et al., 2015].
Model
Detection potential is based upon a supernova at d = 10 kpc from Earth which releases
3 × 1053erg of binding energy evenly among all six neutrino flavours and types. Mean energiesare ⟨Eνe ⟩ = 12 MeV, ⟨Eν̄e ⟩ = 15 , and ⟨Eνx ⟩ = 18 MeV. [Andringa et al., 2015]
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Simulated Scintillator Signal

νx + p → νx + p

⟨Eνx ⟩ = 17.8+3.5
−3.0(stat.)+0.2

−0.8(syst.) MeV

⟨ενx ⟩ =
(102.5+82.3

−42.2(stat.)+16.2
−13.0(syst.))×1051 erg

[Andringa et al., 2015] Figure: Time integratedneutrino-proton scattering energydistribution in the first second of asupernova.
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Internal Volume

SuperNova Early Warning System
• Increases the sensitivity to faint or distant supernovae and the alertconfidence; coincident signals may allow for triangulation to thedirection of the source
• SNEWS 2.0: lower thresholds, integrated multi-messenger approach,pre-core-collapse alert (full details in [Al Kharusi et al., 2021])

Figure: Multi-messenger signals before and after collapse of a 17 M⊙ progenitorstar. [Al Kharusi et al., 2021]
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External Volume

Simulated Water Signal

Figure: Cross sections for potentialsupernova neutrino interactionchannels. [Scholberg, 2011]

• Volume of UPW between the PSUP andthe AV acts as an additional waterCherenkov detector (2.12 kT)
• Sensitive to inverse beta decay (IBD)and elastic scattering off of electrons

ν̄e + p → e+ + n

νe,x + e− → νe,x + e−

• Scattered electrons are sensitive to theincoming neutrino direction, and couldpotentially be used for obtainingdirectional information that is difficultin scintillator
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External Volume

Simulated Water Signal

Truth (MC) event counts for the external volume (EV) of SNO+ for the firstsecond of a supernova at d = 10 kpc from Earth. Only elastic electronscattering (left) and IBD (right) events were simulated in this case (IBDevents were only generated from ν̄e interactions).
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Water Pointing

cos(θSN) =
x̂R ·x̂SN

|x̂R ||x̂SN |

x̂SN = (+1.0, 0.0, 0.0)
x̂R : Reconstructed direction

• Total of 60 supernovasimulations at
d = 10 kpc for a 2 s timewindow

• Includes only theelectron elasticscattering events(induced by all flavours) Figure: Angular distribution of thereconstructed events in the SNO+ EV.
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External Volume

Water Pointing

Forward peaking events havereconstructed directionsaligned with the supernovaorigin direction, pointingaway from the source.
Figure: Angular distribution of thereconstructed events in the SNO+ EV.
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External Volume

Water Pointing

Backward peaking eventshave reconstructeddirections pointing towardsthe supernova origindirection.
Figure: Angular distribution of thereconstructed events in the SNO+ EV.

This population of events is unexpected (and not observed in the solar pointing inSNO+ water phase) and still under investigation.
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Conclusion

Now in full scintillator phase, SNO+ hasthe capability to be sensitive tosupernova neutrinos through multiplechannels.
Neutral current neutrino-protonscattering could measure the flux of νx .
The external volume of water has thepotential to act as a secondaryCherenkov detector to quickly estimatethe direction of an incoming supernovaevent.
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Muon Flux
The muon rate for SNOLab is measured at 0.286 ± 0.009 µ/m2/day for6010 m.w.e. of shielding. [Aharmim et al., 2009]

Figure: [Gómez-Cadenas et al., 2011]
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130Te

130Te has the highest naturalabundance of all favoured0νββ candidates, as well as along 2νββ decay half-life. It’sQ-value falls below the twohighest backgrounds,necessitating stringent radiopurity.
Figure: Q-value vs. abundance ofisotopes capable of 2νββ decay.[Albanese et al., 2021]
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Chandrasekhar Limit

MCh = 5.83Y 2
e (1)

where Ye is the number density of electrons relative to the total nucleonnumber density,
Ye =

ne

ρNA
. (2)

For Ye = 0.50,MCh = 1.457M⊙. As the number of electrons is depleted inthe core, the Chandrasekhar mass limit decreases accordingly.[Woosley et al., 2002]
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Neutrino Generation

1 Electron Capture: e− + p → n + νe; emitted neutrino has acharacteristic energy, and a recoil is caused in the daughter atomwith characteristic momentum. Daughter atom will de-excited intothe ground state by a gamma ray or internal conversion.
2 Beta Minus Decay: n → p + e− + ν̄e; radioactive decay of a neutronwhich emits a beta particle and an electron anti-neutrino.
3 Weak Process Pair Annihilation: e+ + e− → ν + ν̄; occurs in thehigh density region of neutrinos trapped by the in-fall of matter inthe accretion phase, where thermal photons create theelectron-positron pairs.
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Neutrino Emission Epochs

Epoch Duration Dominant Emission
Pre-supernova days ν̄eCollapse < 50 ms νeAccretion ≃ 100 ms (ONeMg core) νx < ν̄e < νe

≃ 200-700 ms (Fe core) νx < ν̄e < νeCooling ≃ 10 s all flavours
Table: Summary of neutrino emission during different supernova phases. Tableadapted from [Horiuchi and Kneller, 2018].
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SNEWS Detector Types

Type Material Capability Flavour
Energy Timing Pointing

Scintillator C,H true true false ν̄eWater Cherenkov H2O true true true ¯nueHeavy Water (NC) D2O false true false νeHeavy Water (CC) D2O true true true νe ,ν̄eLiquid Argon Ar true true true νeHigh Z/Neutron Pb, Fe true true false allRadio-Chemical 37Cl, 127I, 71Ga false false false νe

Table: Types of supernova neutrino detectors and their capabilities. Table adaptedfrom [Pietro et al., 2004].
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