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Background

The Top Quark

o Heaviest known fundamental
particle (m; = 172.5GeV)

» First place a new particle could be
observed, particularly if it couples
to mass

o Extremely short lifetime
(~ 5 x 1072%)

» Decays semi-weakly (t—Wb),
before hadronization can occur

» Only place to study properties of
a “bare” quark

@ Precise measurements enhance our
sensitivity to possible beyond SM
effects
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Background

Top-Antitop Pair Production (ttbar)

o Top quark decays to b and W
~99% of the time

o W decays hadronically with ~70%
branching ratio and leptonically
with ~30%

o Focus on semi-leptonic decays
(~30% branching ratio)
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Algorithms:

o Currently well-established and
widely used

o Determines the best permutation
of detector-level jets to
particle-level jets by:

» Employing kinematic constraints

» Sometimes aiming to maximize
a likelihood or minimize a
chi-squared

» Assuming a four-jet system

@ Reconstruct the top and anti-top
4-vectors from this permutation

o E.g. Kinematic Likelihood Fitter
(KLFitter), TtresChi2 (Chi2), and
PseudoTop (PT)
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Deep Neural Networks:

@ Determines weights and functions
(through training) that will map
the typical detector-level objects to
the expected parton-level objects

o Could be more precise, more
efficient, and less model dependant

@ 3 slight variations we're working
on: TRecNet, TRecNet+ttbar,
and TRecNet+ttbar+JetPretrain
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Objective

Algorithms:

o Currently well-established and
widely used

o Determines the best permutation
of detector-level jets to
particle-level jets by:

» Employing kinematic constraints

» Sometimes aiming to maximize
a likelihood or minimize a
chi-squared

» Assuming a four-jet system

@ Reconstruct the top and anti-top
4-vectors from this permutation

o E.g. Kinematic Likelihood Fitter

(KLFitter), TtresChi2 (Chi2), and
PseudoTop (PT)

Deep Neural Networks:

@ Determines weights and functions
(through training) that will map
the typical detector-level objects to
the expected parton-level objects

o Could be more precise, more
efficient, and less model dependant

@ 3 slight variations we're working
on: TRecNet, TRecNet+ttbar,
and TRecNet+ttbar+JetPretrain

Goal:

Design a deep neural network to
reconstruct tt better than current
algorithms!
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Setup

“Truth”

@ Generate hard-scattering with
POWHEG (parton-level)

@ Simulate parton shower and
hadronization with Pythia8
(particle-level)

Jenna Chisholm (UBC) Top Reconstruction with Deep Learning February 2023 4/12



Setup

“Truth”

@ Generate hard-scattering with
POWHEG (parton-level)

@ Simulate parton shower and
hadronization with Pythia8
(particle-level)

“Measured” / “Reco Input”

@ Detector response simulated by
Geant4 (detector/reco-level)

> Jets: (p7,n,8,E), btag

» Lepton: (pT,ePrnIepr¢lep)
» Missing Transverse Energy:

ET.¢e;
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Setup

il “Measured” / “Reco Input”

@ Generate hard-scattering with @ Detector response simulated by
POWHEG (parton-level) — Geant4 (detector/reco-level)

@ Simulate parton shower and > Jets: (p7,1m.0,E), btag
hadronization with Pythia8 > Le_Pt?ni (pT;ern/epr¢lep)
(particle-level) » Missing Transverse Energy:

Er.¢e;

1

“Predictions” / “Reco Output”

@ Previous fitting algorithms vs. Top
Reconstruction Neural Networks
» Hadronic Top:
(PTth Mty Dty My )
» Leptonic Top: (p-,-tl,nt,,¢>t,,mq)
> ttbar: (pr,;.7m:s Prr Mit)
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Setup

il “Measured” / “Reco Input”

@ Generate hard-scattering with @ Detector response simulated by
POWHEG (parton-level) — Geant4 (detector/reco-level)

@ Simulate parton shower and > Jets: (p7,1m.0,E), btag
hadronization with Pythia8 > Le_Pt?ni (pT;ern/epr¢lep)
(particle-level) » Missing Transverse Energy:

Er.¢e;

1

“Predictions” / “Reco Output”

@ Previous fitting algorithms vs. Top
Reconstruction Neural Networks
» Hadronic Top:
(PTth Mty Dty My )
» Leptonic Top: (p-,-tl,nt,,¢>t,,mq)
> ttbar: (pr,;.7m:s Prr Mit)

Compare!
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Architectures

Model #1: TRecNet

Input (6 Jets)

I

Input (lep + met)

|

]
Flatten & Merge

TDDense (128) 1 Dense (128)
l Dense (256) l
TDDense (64) Dense (256) Dense (64)
Dense (6)
(sigmoid)
Multply each jet by
LSTE Flatten & Merge Dense (256)
TDDense (256)
Dense (256)
l Dense (128)
TDDense (256)
Dense (128) l

Output (Leptonic)

Output (Hadronic)

o Input: pre-processed jets (6) and
other (lep, met) variables

o First attempts to learn which jets
are relevant to tt process

o Predicts leptonic 4-vectors (t;, W))
first, since their classification is
easier, and then uses this
information to help inform
predictions on the hadronic
4-vectors (tp, Wh)
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Architectures

Model #2: TRecNet-+ttbar

Input (6 Jets) Input (lep + met)

I

Flatten & Merge

TDDense (128) 1
l Dense (256)
TDDense (64) Dense (256)

3

Dense (128)

l

Dense (64)

e
Dense (6)

(sigmoid)

Multiply each jet by
its weight

Flatten & Merge
TDDense (256)
Dense (256)
TDDense (256) l
Dense (128)

Output (Leptonic)

Dense (256)

|

Dense (128)

v
Output (Hadronic
+ ttbar)

o Input: pre-processed jets (6) and
other (lep, met) variables

o First attempts to learn which jets
are relevant to tt process

o Predicts leptonic 4-vectors (t;, W))
first, since their classification is
easier, and then uses this
information to help inform
predictions on the hadronic
4-vectors (t,, W) and tt variables
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Architectures
Model #3: TRecNet-+ttbar+JetPretrain

Input (6 Jets) Input (Iep + met)

I

v

Flatten & Merge

|

Dense (256)

'

Dense (256)

v

Dense (6)
(sigmoid)

v

Output (6 Jet
Match Tags)

o Obtain weights for the jet
classifier using matched jet tags

o Freeze these weights into this
section of the overall model

Input (6 Jets) Input (lep + met)
i
v
Flatten & Merge
TDDense (128) l Dense (128)
l Dense (256) l
TDDense (64) Dense (256) Dense (64)
Dense (6) ‘
(sigmoid)
Pretrained
Jet Classifier
Multiply each jet by
fts weight Flatien & Merge Dense (256)
TDDense (256)
Dense (256)
l Dense (128)
TDDense (256)
Dense (128) {
Output (Leptonic) O"W'f«(:';:‘r’)mm
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Hadronic Top Results

Response Matrices

(a) Hadronic Top pt (b) Hadronic Top 7 (c) Hadronic Top ¢
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TRecNet-+ttbar4JP is more diagonal than KLFitter = improved precision!
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Hadronic Top Results

Resolutions and Residuals

25 ATLAS Work in Progress N o cuts 1007y

ATLAS Work in Progress

ATLAS Work in Progress =
A o s ok o5 e o i e o ook o e EIE S S S
(a) Hadronic Top pr (b) Hadronic Top 7 (c) Hadronic Top ¢
TRecNet-+ttbar4-JP: TRecNet+ttbar4-JP: TRecNet+ttbar+JP:
pn=0.230=21 p=0.0091,0 = 0.67 ©=0.00071,0 = 0.81
KLF6(LL > —52: 77%): KLF6(LL > —52: 77%): KLF6(LL > —52: 77%):
n=0.18,0 =2.3 © = 0.00043,0 = 0.92 pn=0.0012,0 =1.1

TRecNet-+ttbar4JP is more narrow and less skewed than KLFitter = improved
precision!
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Hadronic Top Results

pT1 Resolutions at Different Momenta

< oo cus oo
' 3 T o o o Neural networks completely remove the extra
5 Mo bump at high p7!
3 ol 8 frias e » Jets become more difficult to resolve at high
H h, pr (events occur with more or less than jets)
RS REER TR EEL A » Neural networks use all jet info, but algorithms
— ' MALLELEILELN use only best permutation of 4 out of 6
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Leptonic Top Results

pT1 Resolutions at Different Momenta
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T o No extra bump at high pt on leptonic side!
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tt Results

m;; Resolutions at Different Momenta

-
o Neural networks improve upon reconstruction of
mass of tt system
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Conclusions and Outlook

o Advantages of the neural networks:
» Appear to improve upon results of from likelihood-based algorithms
» Perform more efficiently
> Flexibility to handle events with more or less than 4 jets (and thus performs
better than previous methods in the boosted topology)

o Future possibilities and outlook:

» Widen model to consider more jets (e.g. 7 or 8)

» Unfreeze the jet pre-training weights to fine-tune TRecNet+ttbar+JetPretrain
model

» Measure model dependency

» Include systematics to obtain a more quantitative measure of the neural
network’s improvement
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Background

Parton-level vs. Particle-level vs. Detector-level

Detector level:
Energy deposits

Particle level:
Baryons
Mesons

Parton level:

Quarks

Gluons
Proton-Proton
collision
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Background

Parton-level vs. Particle-level vs. Detector-level

o Parton-level: Only includes perturbative matrix element calculations
» E.g. hard scattering events generated by POWHEG

o Particle-level: Includes both perturbative and non-perturbative matrix
element calculations

» E.g. parton shower/hadronization components handled by Pythia8
o Detector-level: What we measure

» E.g. data or simulated data from Geant4
» The top reconstruction algorithms we're using are at this level

Non-perturbative calculations/ Measure in detector or Geantd.

/ Hadronization/Pythia8 \ / w

Parton-level Particle-level Detector-level

A\m"em for hadronic aﬂecm/ \

Unfolding/Correcting for detector effects
(through different theories) ing/Gomecting for the

Easier to Closer to what What we
calculate we measure measure
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Background

Boosted vs. Resolved Topology

Resolved Final State Boosted Final State

lepton \ lepton

b-jet

large R jet
(top jet)

light jets light jets b-jet

Increasing Transverse Momentum
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Background

Coordinate System

p=10=—>T1=2:44
0=0"—>N=

n=— In[tan(g)]

LHC
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Reconstruction Algorithms

Kinematic Likelihood Fitter (KLFitter)

o Best permutation of jets determined using kinematics and likelihood
calculations:

L :B(mq1q2q3|mf7 rt) : B(mq1q2|mW7 rW) . B(mq4lu|mf7 rt) . B(mZV‘mWa rW)'

vam 75| E) - We(EP| o) - Woiss(E7105) - Wi (E]"5)

> Breit-Wigner terms (B) — quantify agreement of known masses with
measured decay products

» Transfer function terms (W) — quantify agreement of fitted energies and
missing transverse momentum components with measured values
(detector-specific and representative of experimental resolutions)

@ Likelihood calculated for each possible association of detector-level jets to
particle-level jets, where my, Ejet,i, E¢, and p, are treated as parameters varied to
maximize the likelihood

@ Retain permutation with highest likelihood (called the “best permutation”)

@ Can make cuts on log £ to separate well- and poorly-reconstructed events
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Reconstruction Algorithms

Breit-Wigner Functions and Transfer Functions

. . . Transfer Function:
Breit-Wigner Function:

Y(E)
B k W(E) = — =
B(E|M7 r) - (E2 _ M2)2 + M?2T2 X(E) initial conditions = 0
where, where,
k= 22Ty Y = lapl form of
. ove = laplace transtform of output
N
and and

v =/ M2(M? +T2)
X = laplace transform of input
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Reconstruction Algorithms

TtresChi2

o Best permutation of jets determined using kinematics and chi-squared

calculation:
2 _[Mj — mw, 12 | [Mjp— Mjj — Myw, 7% | [ Mooy — My, 72
ow, Oty—W, Tty
(P = PT.bt) = (PTty = PT) |
+ { PT jib — PT,btv PT,t, — PT,t }
O—PT‘rh*PT‘t[

» Constraint on dijet mass to form hadronic W

» Constraint on three jets to form hadronic top — contribution of hadronic W
subtracted to decouple first two terms, since mj; and mjj, are highly correlated

» Constraint on remaining jet, lepton and neutrino (met) to form leptonic top

» Constraint on transverse momentum balance between the two top quarks (pr
should be similar, as expected in a resonance)

o Expected values of parameters myy,, my,—w,, My, PT.t, — PT,t, as well as
their uncertainties ow,, ov,—w,, 0+, Op, —pr,, are obtained from the
simulated Z' events by matching reconstructed objects to truth partons

o Can make cuts on x? to separate well- and poorly-reconstructed events
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Reconstruction Algorithms

PseudoTop

o Uses lepton, jet, and missing transverse energy measurements, as well as
known mass of W boson

o Only two b-tagged jets with highest pr are considered part of the system

Algorithm:

1. Reconstructs neutrino 4-momentum

» px and p, obtaining from met
» p. calculated by conservation of momentum

2. Reconstruct leptonic W from lepton and neutrino

3. Reconstruct leptonic top from leptonic W and b-tagged jet closest in
AR = \/A¢? + An? to lepton

4. Reconstruct hadronic W from the two light-flavoured jets whose
invariant mass is closest to mass of W boson

5. Reconstruct hadronic top from hadronic W and remaining b-tagged
jet
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Neural Networks

Pre-Processing Trials

o Model performance was evaluated on validation data using mean-squared
error (mse = (truth — prediction)?)
H 1 led _ xj—X H led _ _x—X
o Mean/variance scaling (xl.scae = U'(X)) vs. mean/max scaling (x,.s“'e = )

max(|x|)

» Standard procedure for allowing the network to focus on each variable equally
o Encoding ¢ with sin(¢) and cos(¢) vs. triangle wave of sin(¢) and cos(¢)
vs. p, and p,
» Former two produced edge peaks that the network has trouble predicting
o Boxcox transformation of pr (pT = #) vs. (px, py) vs. pr
» Boxcox did better on average, but poorly reconstructed low pr events
» p« and p, difficult to predict, resulting in large compounding error for pr

pt comparison eta comparison phi comparison

20 0 0 0
ATLAS Work n Progress 11| ATLAS Workin Progress ATLAS Work n Progress
00 250
2500 10 225
2500 03 e
" M $10s
E 2100 Bl EY
200 [N e
07
. . 125
2000 L . [
* s 06 + 100 . .
1800 .
075

ptboxcox { @
Papypz
Pepypz
Ppypz

X, %, py, eta
pt boxcox

ptbox, px, py, eta
manually center phi
line
ptbox, px. py. eta { o

ptbos
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Neural Networks

Pre-Processing Procedure

166
7 ATLAS Work in Progress.

Counts

¢ encoding (with

mean/max scaling) '

-100 -0.75 -050 -025 000 025 050 075 100
Jet1p.[GeV]

166

ATLAS Work in Progress.

Counts
I T

-100 -0.75 050 -025 000 025 050 075 100

o Final procedure: e
» Encode ¢ with sin(é7), cos(¢7) and all other ¢ with p. and p,
> All inputs (except bsg) undergo mean/max scaling
» Model predicts (pr, px, py,n, m) for top quarks and Ws in mean/max scale
» Invert mean/max scaling and ¢ encoding to return predictions to original scale
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Training Features

Loss Function

Training Feature TRecNet Models Jet Pre-training

Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 103 to 5 x 1072 with Polynomial decaying from 102 to 5 x 10~ % with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer RelLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val_loss, patience=10) Early stopping (monitor=val_loss, patience=10)

Events, Batch Size ~23 Million, 1000 ~23 Million, 1000

o Loss function: quantifies error for current state of model — want to change
weights to reduce this loss on next evaluation
e E.g. Binary cross entropy loss function:
» Default loss function for binary classification problems
» Calculates a score between [0, 1] that summarizes average difference between
true and predicted, and tries to minimize this score through training
» Used for jet-pretraining model
o E.g. Mean absolute error (MAE) loss function:
» Calculates average absolute difference between true and predicted
» Often most appropriate in regression problems where target distributions are
mostly Gaussian but may have outliers, since it punishes larger mistakes from
outliers less harshly than, for example, MSE
» Used for TRecNet models
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Training Features

Optimizer

Training Feature TRecNet Models Jet Pre-training

Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 103 to 5 x 1072 with Polynomial decaying from 10~ 2 to 5 x 10~ % with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val_loss, patience=10) Early stopping (monitor=val_loss, patience=10)

Events, Batch Size ~23 Million, 1000 ~23 Million, 1000

o Optimizer: Method or algorithm by which we change weights of network in
order to locate minima of loss function

o E.g. Stochastic gradient descent (SGD):

» Estimates gradient of loss function with randomly selected subset of data
» Uses estimated gradient to choose direction to move in search space (with
step size determined by learning rate)

o E.g. Adam:

» Particular type of SGD where learning rate is non-static — individual adaptive
learning rates are computed for different parameters from estimates of first
and second moments of the gradients

o Used for TRecNet models and jet pre-training
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Training Features

Learning Rate

Training Feature TRecNet Models Jet Pre-training

Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 103 to 5 x 10~ 2 with Polynomial decaying from 102 to 5 x 10~ 7 with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val_loss, patience=10) Early stopping (monitor=val_loss, patience=10)

Events, Batch Size ~23 Million, 1000 ~23 Million, 1000

o Learning rate: Step size that optimization algorithm uses at each iteration to
move towards the minima
» Parameter that can be fine-tuned to optimize model performance
» Can modulate how learning rate changes over training

o E.g. Polynomial decay rate:

» Begin with larger learning rate — take larger steps and train faster

» Gradually move to smaller learning rate — take smaller steps and fine-tune
optimization

» Used for TRecNet and jet pre-training (which slight differences)
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Training Features

Activation Function

Training Feature TRecNet Models Jet Pre-training

Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 103 to 5 x 10~ 2 with Polynomial decaying from 102 to 5 x 10~ % with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function ReLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val_loss, patience=10) Early stopping (monitor=val_loss, patience=10)

Events, Batch Size ~23 Million, 1000 ~23 Million, 1000

o Activation function: Defines how weighted sum of input to a node is
transformed to output from that node
» Allows network to handle more complex patterns and non-linear problems —
large impact on capability and performance of network
» Can have different activation functions for different layers
o E.g. ReLU (Rectified Linear Function): max(0, x)
» Popular for hidden layers
» Easy to implement, quick, computationally light, and less susceptible to the
vanishing gradient problem
» Used for almost all of our hidden layers
o E.g. Sigmoid (or Logistic) Function: 1/(1 4 e™¥)
» Popular for hidden and output layers
» Use for output from jet classifier
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Training Features

Regularization

Training Feature TRecNet Models Jet Pre-training

Loss Function Mean absolute error Binary cross entropy

Optimizer Adam Adam

Learning Rate Polynomial decaying from 103 to 5 x 1072 with Polynomial decaying from 102 to 5 x 10~ % with
power of 0.25 and decay steps of 10000 power of 0.25 and decay steps of 10000

Activation Function RelLU excpet for one sigmoid layer and linear output layer ReLU excpet for sigmoid output layer

Regularization Early stopping (monitor=val_loss, patience=10) Early stopping (monitor=val_loss, patience=10)

Events, Batch Size ~23 Million, 1000 ~23 Million, 1000

o Regularization: Techniques to prevent over- or under-fitting
o E.g. Early stopping (monitor=val_loss,patience=10):

» End training after 10 epochs of no improvement in loss for the validation data
» Used for TRecNet and jet pre-training

Jenna Chisholm (UBC) Top Reconstruction with Deep Learning



Training Features

Events and Batch Size

Training Feature

TRecNet Models

Jet Pre-training

Loss Function

Mean absolute error

Binary cross entropy

Optimizer

Adam

Adam

Learning Rate

Polynomial decaying from 103 to 5 X 10> with
power of 0.25 and decay steps of 10000

Polynomial decaying from 102 to 5 X 10— % with
power of 0.25 and decay steps of 10000

Activation Function

ReLU excpet for one sigmoid layer and linear output layer

ReLU excpet for sigmoid output layer

Regularization

Early stopping (monitor=val_loss, patience=10)

Early stopping (monitor=val_loss, patience=10)

Events, Batch Size

~23 Million, 1000

~23 Million, 1000

o Events: 33 million
» 70% to training
» 15% to validation
> 15% to testing

o Batch Size: Number of events processed before model is updated
» Used batch size = 1000 for all models

Chisholm
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Neural Networks

Training

TRecNet MAE Loss JetPratrainer Binary Cross-entropy Loss
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Jet Pre-Training

Jet Matching Algorithm

o For a match (matched jet tag = 1) between detector-level jet and
parton-level decay product:

» Require jet has the same flavour as the decay product
» Require AR = \/A¢? + An? < 0.4

o 85% of detector-level jets were matched to a parton-level decay product, with
~100% having a reasonable fractional Apr
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Jet Pre-Training

Jet Pre-Training Response Matrices

False Neg
— 23586
292%

Truth

False Neg
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