∂TRIUMF

An Introduction to the TUCAN EDM Measurement

Dr. D. Fujimoto

2023-02-17

 $d_{\rm n} \leq 10^{-27}\,{\rm e}\cdot{\rm cm}$

Matter/antimatter asymmetry

Why do we have stuff?

$$d_{\rm n} \le 10^{-27} \,{\rm e} \cdot {\rm cm}$$

$$d_{\rm n} = \frac{\pi \hbar}{2E_0} (\nu^{\uparrow\downarrow} - \nu^{\uparrow\uparrow})$$

Measurement Challenges

Three big categories:

- \rightarrow Achieving high statistics (lots of neutrons)
- → Creating, controlling, and detecting polarization (maintain spin alignment)
- → Minimizing systematics (pesky experimental realities)

Measurement Challenges

Three big categories:

- \rightarrow Achieving high statistics (lots of neutrons)
- → Creating, controlling, and detecting polarization (maintain spin alignment)
- → Minimizing systematics (pesky experimental realities)

Adiabatic transport of polarized ultracold neutrons

Emma Klemets (she/her) Supervisor: Beatrice Franke MSc student at UBC & TRIUMF

UCN source components:

- \rightarrow Proton beamline
- \rightarrow Target
- → Neutron moderators and reflectors
- \rightarrow Liquid He tail section
- \rightarrow LHe and LD₂ cryostats

Beamline and target

- \rightarrow Beamline run at 1 μ A (2017-2019)
- \rightarrow 2023: preparing for 40 µA (expected: 10⁷ UCN/s)

Tail section and moderators

Tail section and moderators

- → Bulb: Innermost layer completed and leak-checked
- $\rightarrow\,$ Storage capabilities validated with UCN at LANL

Tail section and moderators

- \rightarrow Bulb: Innermost layer completed and leak-checked
- $\rightarrow\,$ Storage capabilities validated with UCN at LANL
- → Graphite carrier constructed and filled

Cryostat

- $\rightarrow~{\rm Cool}~{\rm LHe}$ to $1.15\,{\rm K}$
- $\rightarrow\,$ Build completed and leak-checked
- \rightarrow Lots of infrastructure installed (He recovery, cryo pumps, etc.)
- ightarrow 2023: installation and testing

Arise primarily due to imperfect magnetic fields

- \rightarrow Field stability
 - \rightarrow Magnetically shielded room
 - \rightarrow Atomic comagnetometer
- \rightarrow Field homogeneity
 - $\rightarrow B_0$ coil
 - \rightarrow Mapper robot
 - \rightarrow Cs magnetometers

Field stability

Magnetically shielded room

- $\rightarrow\,$ Reduce magnetic fields by a factor of 10^5
- $\rightarrow~{\rm Keep}$ noise ${<}1\,{\rm pT}$ over ${\sim}100\,{\rm s}$
- $\rightarrow\,$ Assembly complete this September

Field stability

Magnetically shielded room

- $\rightarrow\,$ Reduce magnetic fields by a factor of 10^5
- \rightarrow Keep noise $<1\,\mathrm{pT}$ over $\sim 100\,\mathrm{s}$
- \rightarrow Assembly complete this September

Field stability

Atomic Comagnetometer

 \rightarrow Measure magnetic field in neutron volume

Field stability

Atomic Comagnetometer

- \rightarrow Measure magnetic field in neutron volume
- $\rightarrow\,$ Fill space with Hg gas

Field stability

Atomic Comagnetometer

- \rightarrow Measure magnetic field in neutron volume
- $\rightarrow\,$ Fill space with Hg gas
- $\rightarrow\,$ Optically measure precession frequency $\rightarrow\,\langle B\rangle$

Field stability

Atomic Comagnetometer

- \rightarrow Measure magnetic field in neutron volume
- $\rightarrow\,$ Fill space with Hg gas
- $\rightarrow\,$ Optically measure precession frequency $\rightarrow\,\langle B\rangle$
- $\rightarrow~$ Prototype at UBC: work ongoing

Field homogeneity

Some highlights:

- $\rightarrow B_0$ coil
- \rightarrow Mapper robot
- \rightarrow Cs magnetometers

Field homogeneity

B_0 coil

- $\rightarrow~$ Produce a $1\,\mu\text{T}$ magnetic field
- \rightarrow Self-shielded design completed

Field homogeneity

B_0 coil

- \rightarrow Produce a 1 µT magnetic field
- \rightarrow Self-shielded design completed
- → Lightweight support frame design completed and tested for rigidity

G10 Frame Sandwich Skin Wire Guides

Field homogeneity

B_0 coil

- $\rightarrow~$ Produce a $1\,\mu\text{T}$ magnetic field
- \rightarrow Self-shielded design completed
- → Lightweight support frame design completed and tested for rigidity
- $\rightarrow\,$ Wire guides being 3D printed
- $\rightarrow\,$ Assembly completed end of summer

Wire guide panel

Field homogeneity

Mapper robot

- $\rightarrow\,$ Offline: Measure spatial grid with single magnetic sensor
- \rightarrow Prototyped by UBC engineering physics students
- \rightarrow Engineering ongoing, prototype operational end of summer

Field homogeneity

Cs Magnetometers

- $\rightarrow\,$ Array of 20 probes to measure field gradients around HV cell
- $ightarrow \, \sigma_{\langle B
 angle} = 10 \, {\rm fT}$, averaging over $100 \, {\rm s}$
- $\rightarrow\,$ Manufacture, characterization ongoing
- ightarrow Partially operational end of 2023

∂TRIUMF

- \rightarrow Source to begin testing in 2023 UCN in 2024!
- \rightarrow EDM measurement tools in earlier stages, but progressing quickly
- → **Goal**: measure the nEDM to $10^{-27} \text{ e} \cdot \text{cm} \text{ in } <400$ measurement days

(END)