Laser Calibration Studies Using the ALPHA-g Detector

UNIVERSITY OF

Pooja Woosaree

WNPPC 2023 18.02.2023

Outline

- Weak Equivalence Principle
- Laser Calibration
 - → System
 - → Results
 - Outlook

Einstein's Weak Equivalence Principle

The acceleration due to gravity that a body experiences is **independent** of its structure or composition

Let's skip the part where I explain how we make antihydrogen...

UNIVERSITY OF

"Magnetic Fields During Gravitational Experiments with Antihydrogen" Adam Powell at 9:45AM

"Anti-hydrogen Detection and Background Rejection for ALPHA-g" Gareth Smith at 9:30AM

The radial Time Projection Chamber

**Bottom view of ALPHA-g apparatus, not to scale

The radial Time Projection Chamber

**Bottom view of ALPHA-g apparatus, not to scale

Electron drift time is necessary to reconstruct the pion track

The radial Time Projection Chamber

Timing and position information are critical to the gravity measurement

Laser Calibration

Purpose

To understand the detector response in tracking particles in a nonuniform magnetic field

Key observable: drift time

Factors that affect particle drift:

- Pressure
- → Temperature
- → Gas mixture
- Magnetic field

Laser Calibration Technique

Laser type: Nd:YAG Laser pulsed beam: 50 Hz Wavelength: **266 nm** Energy operated: < 0.1mJ Al strip width: 6 mm

Laser Calibration

Proof of Concept

Laser calibration: λ = 266 nm light shone into the rTPC

**Images are not to scale.

Laser Calibration

Proof of Concept

Al strip 6, z = 530 mm

15

row (z positions)

row (z positions)

Run 6343 Fibre T11 (Top of Detector) B=1 T

Run 6344 Fibre T03 (Top of Detector) B=1 T

Run 6342 Fibre B07 (Bottom of Detector) B=1 T

Run 6341 Fibre B15 (Bottom of Detector) B=1 T

Run 6343 Fibre T11 (Top of Detector) B=1 T

time (ns

Run 6344 Fibre T03 (Top of Detector) B=1 T

Run 6342 Fibre B07 (Bottom of Detector) B=1 T

Run 6341 Fibre B15 (Bottom of Detector) B=1 T

Laser Data Drift Times

drift time max change

- Upper limit on drift time was found to be 165.9 ns (or 4.2% difference)
- During the time period of November 2 and December 15, 2022

Laser Data

drift time vs pressure

- Nice linear correlation with pressure
- Over the same period, the pressure difference was **31.9 mbar**

Laser Data

drift time and z position

- Controlled antiproton for annihilation calibrations
- Adjust z position reconstructions to account for max drift of 4.2%

Conclusion

- ALPHA-g has successfully commissioned the detector to move forward with the experiment
- Laser calibration is crucial to determining key drift information in the rTPC
- Future laser calibration work includes analysis to determine observables such as the Lorentz angle to futher improve reconstructions

Thank you!

Canada Foundation for Innovation

%TRIUMF

S.

rTPC gas mixture

• 70% Argon, 30% CO2

Particle Multiplicity

ALPHA-g Particle Multiplicity

Work Functions

