Enyper-Kamiokande

PRECISION MEASUREMENT OF NEUTRINO OSCILLATIONS WITH HYPER-KAMIOKANDE

XIAOYUE LI TRIUMF WNPPC 2023, BANFF, CA FEBRUARY 16-19, 2023

RIUME

OUTLINE

Introduction ▸ Neutrino mixing and neutrino oscillations ▸ Measuring neutrino oscillation parameters ▸ Long baseline experiment: T2K ▸ Hyper-Kamiokande ▸ Sensitivity and progress ▸ The main systematic uncertainties and how to reduce them ▸ Effort toward better detector calibration

NEUTRINO MIXING

- ▸ Neutrinos are neutral, left-handed, weakly interacting fermions
	- ▸ Mixing matrix, aka Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

νe νμ ντ $= U^*_{{\boldsymbol p}_l}$ *PMNS ν*1 *ν*2 *ν*3 $U_{PMNS} =$ $\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \end{bmatrix}$ $U_{\mu 1}$ $U_{\mu 2}$ $U_{\tau 1}$ $U_{\tau 2}$ $U_{\tau 2}$ $U_{\tau 3}$

Decomposition of unitary PMNS matrix

 c_{12} s_{12} −*s*¹² *c*¹² 0 $0 \qquad 0$ 1 0 0 0 *e*−*ⁱ α*21 $\frac{2}{2}$ 0 0 0 *e*−*ⁱ α*31 2 Only present if neutrinos are Majorana

 $s_{ij} = \sin \theta_{ij}$ $c_{ij} = \cos \theta_{ij}$

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{CP}} & 0 & c_{13} \end{pmatrix}
$$

NEUTRINO OSCILLATION

 \blacktriangleright Neutrinos are produced through weak interaction in flavor eigenstates $|\nu_k\rangle$ and propagate in the mass eigenstates $\ket{\nu_{\alpha}}$

→ Oscillation probability in vacuum $P(\nu_\alpha \rightarrow \nu_\beta) = \frac{1}{2}$

 \blacktriangleright L (baseline) and E (neutrino energy) of an experiment determines which parameters it can measure

KamLAND

- \blacktriangleright Reactor neutrino $\bar{\nu}_e$
- ▸ *E*: a few MeV
- ▸ *L*: ~180km

j

 $\frac{1}{4E} \sim 0.5 \times 10^{5} \text{eV}^{-2}$, *L* 4*E* $\sim 0.5 \times 10^5$ eV⁻², ∆m²₂₁ ≈ 7.6 × 10⁻⁵eV²

 $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{12} \sin^2$

▸

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$

 Δm^2_{21}

4*E*

L

)

 \sqrt

NEUTRINO OSCILLATION

 \blacktriangleright Neutrinos are produced through weak interaction in flavor eigenstates $|\nu_k\rangle$ and propagate in the mass eigenstates $\ket{\nu_{\alpha}}$

→ Oscillation probability in vacuum $P(\nu_\alpha \rightarrow \nu_\beta) = \frac{1}{2}$

 \blacktriangleright L (baseline) and E (neutrino energy) of an experiment determines which parameters it can measure

▸ CP-violation in the lepton sector if $\delta_{CP} \neq 0, \pm \pi$

j

$$
\rightarrow P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})
$$

 \blacktriangleright δ_{CP} can be probed by *c*omparing ν and $\bar{\nu}$ oscillation

NEUTRINO OSCILLATION

 \blacktriangleright Neutrinos are produced through weak interaction in flavor eigenstates $|\nu_k\rangle$ and propagate in the mass eigenstates $\ket{\nu_{\alpha}}$

→ Oscillation probability in vacuum $P(\nu_\alpha \rightarrow \nu_\beta) = \frac{1}{2}$ *j* $U_{\alpha i}^*$

 \blacktriangleright L (baseline) and E (neutrino energy) of an experiment determines which parameters it can measure

CP-violation in the lepton sector if $\delta_{CP} \neq 0, \pm \pi$

 \rightarrow $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

 \blacktriangleright δ_{CP} can be probed by *c*omparing ν and $\bar{\nu}$ oscillation

$$
\begin{array}{c}\n \left. \begin{array}{cc}\n \text{d} & \text{d} \\
 \text{d} & \text{d} \\
 \text{d} & \text{d}\n \end{array} \right\}\n \left. \begin{array}{c}\n \text{d} & \text{d} \\
 \text{d} & \text{d} \\
 \text{d} & \text{d}\n \end{array} \right\}
$$

2

▸ The "matter effect" (or MSW effect) can modify the oscillation probabilities *►* ν_e and $\bar{\nu}_e$ interaction with e^- in matter **• Effects different for** ν **and** $\bar{\nu}$ \blacktriangleright Sensitive to the sign of Δm^2_{32} in long baseline and atmospheric neutrino measurements

CURRENT UNDERSTANDING OF NEUTRINO OSCILLATIONS

$$
\sin^2(\theta_{12}) = 0.307 \pm 0.013
$$
\n
$$
\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2
$$
\n
$$
\sin^2(\theta_{23}) = 0.539 \pm 0.022 \quad (S = 1.1) \quad \text{(Inver)}
$$
\n
$$
\sin^2(\theta_{23}) = 0.546 \pm 0.021 \quad \text{(Normal order)}
$$
\n
$$
\Delta m_{32}^2 = (-2.536 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad \text{(Inved)}
$$
\n
$$
\Delta m_{32}^2 = (2.453 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad \text{(Norm)}
$$
\n
$$
\sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2}
$$

 \blacktriangleright Is m_3 larger than m_1 ?

- ▶ Is there CP-violation in the lepton sector?
	- What are the absolute masses of neutrinos?
- ▶ Are neutrinos Dirac or Majorana?
- ▶ Are there sterile neutrinos?

Δ*m*²

Solar & reactor m^2 \uparrow Atmospheric &

 $\overline{\cdot}$

PO

CURRENT UNDERSTANDING OF NEUTRINO OSCILLATIONS

$$
\sin^2(\theta_{12}) = 0.307 \pm 0.013
$$
\n
$$
\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2
$$
\n
$$
\sin^2(\theta_{23}) = 0.539 \pm 0.022 \quad (S = 1.1) \quad \text{(Inver)}
$$
\n
$$
\sin^2(\theta_{23}) = 0.546 \pm 0.021 \quad \text{(Normal order)}
$$
\n
$$
\Delta m_{32}^2 = (-2.536 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad \text{(Invé)}
$$
\n
$$
\Delta m_{32}^2 = (2.453 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad \text{(Norm)}
$$
\n
$$
\sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2}
$$

 \blacktriangleright Is m_3 larger than m_1 ?

Is there CP-violation in the lepton sector?

What are the absolute masses of neutrinos?

Are neutrinos Dirac or Majorana?

▶ Are there sterile neutrinos?

Δ*m*²

LBL & atmospheric & reactor

LBL

 \bullet

E.g. KATRIN, Project 8 & cosmology

Neutrinoless double beta decay experiments

All of the above & SBL

CURRENT UNDERSTANDING OF NE

LONG BASELINE EXPERIMENT: T2K

Neutrino spectrum before oscillation

LONG BASELINE EXPERIMENT: T2K

 280 m \geq 295 km

- ▸ Magnetic horns focus positively charged or negatively charged pions and kaons
- ▸ Neutrinos are produced via the decay of pions and kaons
- ▸ Neutrino fluxes vary as a function of off-axis angle
- ▸ Current beam power ~500 kW

LONG BASELINE EXPERIMENT: T2K

▸ On-axis detector monitors neutrino beam profile and event rate Off-axis detector measures neutrino interactions at 2.5° off-axis angle ▸ Unoscillated neutrino fluxes

▸ Constrains neutrino fluxes and interaction cross-section at the same

▸ Tracker and calorimeter

▸ Several different nuclear targets

▸ Magnet to differentiate positively charged and negatively charged particles produced by neutrino interactions

LONG BASELINE EXPERIMENT: T2K

νμ CCQE *νe* CCQE

HYPER-KAMIOKANDE

Designed Beam cente

▸ Beam power 500 $kW \rightarrow 1.3$ MW

295 km

Neutrino beam

Near detector

 \otimes

 \sim 10m

 $280 m \rightarrow 1 km$

~0.6 GeV

3D-array of 1-cm scintillator cubes (184x192x56)

56 (Y) +1 spare layers x 192 cubes (X) x 182 cubes (Z) [1,991,808 cubes in total]

HYPER-KAMIOKANDE

HYPER-KAMIOKANDE

- ▶ 8.6X fiducial volume compared to Super-K
- ▸ 20,000 20" PMTs, 20% photocathode coverage
	- ▸ 2X detection efficiency compared to Super-K PMTs
	- ▸ Better energy and timing resolution

▸ A few hundreds of mPMTs

HYPER-K: RECENT PROGRESS

May 2021, Groundbreaking Total of 3,772 PMTs (~20%) delivered by April 2022

HYPER-K 10-YEAR PROJECTION

- \triangleright Thousands of ν_e and $\bar{\nu}_e$ events ▸ Systematic uncertainties will surpass statistical uncertainty: Thousands of ν_e and $\bar{\nu}_e$ event

Systematic uncertainties will

surpass statistical uncertainty
 • Neutrino flux
 • Cross Sections
 • Cross section effects on

neutrino energy

reconstruction
 • Energy Scale
	- ▸ Neutrino flux
	- ▸ Cross Sections
	- ▸ Cross section effects on neutrino energy reconstruction
	- ▸ Energy Scale/Resolution
	- ▸ Particle Identification
	-

HYPER-K SENSITIVITY

- \blacktriangleright The systematic uncertainty on neutrino interaction cross-section, particularly the $\nu_e/\bar\nu_e$ cross-section, will have the largest impact on δ_{CP} \rightarrow <code>IWCD</code>
-

Hyper-K requires <1% detector systematic uncertainties and <0.5% energy scale uncertainty, more than halved relative to T2K

 \blacktriangleright The energy scale uncertainty also degrades the sensitivity to δ_{CP} –> improved detector calibration and test beam measurements

CONSTRAINING SYSTEMATIC UNCERTAINTIES

External hadron measurement

Neutrino flux model

Oscillation parameters

Far detector

CONSTRAINING SYSTEMATIC UNCERTAINTIES

External hadron measurement

Neutrino flux model

▸ External hadron production data from NA61/SHINE (measurements done on a T2K replica target) reduces flux uncertainties

▸ EMPHATIC data will be used to further reduce the flux uncertainties

Measurement of kaon-carbon forward scattering with EMPHATIC spectrometer

KC 303, Banff Centre

Mr Bruno Ferrazzi

 $17:00 - 17:15$

CONSTRAINING SYSTEMATIC UNCERTAINTIES

Cross-section models

 v_{μ} CCQE v_e CCQE

Correct measurements of oscillation parameters highly depend on the correct modelling of neutrino interactions; but model-building is overwhelmingly difficult!

"Measurement of the inelasticity distribution of neutrino interactions for 100 GeV < $E\nu$ < 1 TeV with IceCube DeepCore", Maria Liubarska, 3:30 pm

| be

CONSTRAINING SYSTEMATIC UNCERTAINTIES

Cross-section models

 v_{μ} CCQE v_{e} CCQE

 $CCI \pi$

Correct measurements of oscillation parameters highly depend on the correct modelling of neutrino interactions; but model-building is overwhelmingly difficult!

CONSTRAINING SYSTEMATIC UNCERTAINTIES

 v_{μ} CCQE v_{e} CCQE

Cross-section models (e.g., from an accelerator) at the beam source (usually with a new source (usually with a new source \mathbb{R}^n

1 Cross sections for oscillations

Final state interaction (FSI)

+ secondary interaction

- ▸ The ability to measure neutrino interactions at different energies is important for understanding neutrino energy reconstruction
- ▸ cross-section measurement can be improved due to *νe*/*ν*¯*^e* better *γ* rejection than ND280

CONSTRAINING SYSTEMATIC UNCERTAINTIES

Water Cherenkov Test Experiment

- ▸ T9 test beam @ CERN
	- \blacktriangleright 0.2 1.1 GeV π, p, e, μ
	- \blacktriangleright Measurement of π secondary interaction and scattering can improve neutrino interaction modelling
- ▸ Prototype of IWCD: test of mPMT and calibration techniques
- ▸ Data taking in 2024

"Threshold Aerogel Cherenkov Detectors of WCTE", Poster by Sirous Yousefnejad

CONSTRAINING SYSTEMATIC UNCERTAINTIES

▸ cross-section measurement can be improved due to *νe*/*ν*¯*^e* better *γ* rejection than ND280

▸ The ability to measure neutrino interactions at different energies is important for understanding neutrino energy reconstruction

- \blacktriangleright 0.2 1.1 GeV π, p, e, μ
- \blacktriangleright Measurement of π scattering can improve neutrino interaction modelling
- ▸ Prototype of IWCD: test of mPMT and calibration techniques
- ▸ Data taking in 2024

or the Hyner-K wate Detectors of WCTE", Poster by eded. The set of \sim A better detector model for the Hyper-K water

Water Cherenkov Test Experiment

A better detector m horophou dot Cherenkov detectors is needed.

▸ T9 test beam @ CERN

More sophisticated detector calibration methods

are necessary.

CALIBRATION SYSTEMS @ TRIUMF — PHOTOGRAMMETRY

▸ Use photogrammetry to measure the position of PMTs and calibration sources in-situ

- ▸ The first survey was done in SK using underwater ROV
- ▸ WCTE and IWCD will utilize fixed cameras
- ▸ Reduce fiducial volume error

N. Prouse

CALIBRATION SYSTEMS @ TRIUMF — WATER MONITORING SYSTEM

- ▸ Light propagation in water needs to be precisely calibrated and monitored
- ▸ Pulsed LED (230 700 nm) with <1 ns width
- ▸ Applications in drinking water monitoring
- ▸ First mechanical prototype built

Light transmission through 15 m of water

CALIBRATION SYSTEMS @ TRIUMF — PTF

▸ Photosensor Test Facility (PTF)

- ▸ Single photon level
- \blacktriangleright Variable x, y, θ, ϕ , wavelength and polarization
- ▸ Variable magnetic field
- ▸ Will also be used to calibrate mPMT

can produce degenerate effects as water quality variation

MSc V. Gousy-Leblanc

Super-Kamiokande

CALIBRATION SYSTEMS @ TRIUMF — MPMT

▸ mPMT instrumented with fast pulsed LED

- **▶ Calibration of water parameters and internal** reflection of the detector
- ▸ mPMTs instrumented amongst 20" PMTs can help break the degeneracy between water parameters and PMT angular response
	- ▸ Multiple angles
	- ▸ Better timing resolution than 20" PMTs

Light injector

FUTURE PROSPECT

▸ Hyper-Kamiokande will be able to determine whether there is CP-violation in the lepton sector for most of the phase-space ▸ Its success relies on the reduction of systematic uncertainties ▸ A multi-purpose experiment that can study many other interesting physics subjects! Lots of effort to reduce systematic uncertainties ▸ WCTE, IWCD ▸ Improved detector calibration methods are being developed

THANK YOU

▸ The "matter effect" (or MSW effect) can modify the oscillation probabilities *►* ν_e and $\bar{\nu}_e$ interaction with e^- in matter **• Effects different for** ν **and** $\bar{\nu}$ \blacktriangleright Sensitive to the sign of Δm^2_{32} in long baseline and atmospheric neutrino measurements

HYPER-KAMIOKANDE WNPPC2023, BANFF

Neutrino energy (GeV)

$$
P(\nu_{\mu} \rightarrow \nu_{e})
$$
\nming normal
\n
$$
P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})
$$
\nusing normal
\n
$$
0.5
$$
\nAssuming normal
\nhierarchy – no matter
\neffect resonance in anti-
\n
$$
0.3
$$
\nmatrix
\n
$$
0.4
$$
\nmatrix
\n
$$
0.5
$$
\nAssuming normal
\nhierarchy – no matter
\n
$$
0.5
$$
\nmatrix
\n
$$
0.5
$$
\nin

\nmatrix
\n
$$
0.5
$$
\nin

\nmatrix
\n
$$
0.5
$$
\nin

\nmatrix
\n
$$
0.5
$$
\nmatrix
\n<math display="</math>

Neutrino energy (GeV)

▸ 1.2 MW neutrino beam, upgradable to 2.4 MW

3. FUTURE PROSPECT: DUNE

DEEP UNDERGROUND NEUTRINO EXPERIMENT (DUNE)

- ▶ On-axis FD: two oscillation maxima
- ▸ Liquid Argon Time Projection Chamber (LArTPC)
- \triangleright 10-kton fiducial mass \times 4

