New Opportunities to Detect Axion Dark Matter

Asher Berlin - Fermilab

GUINEAPIG Workshop July 11, 2023

 $\mathscr{L} \sim \frac{\partial_{\mu}a}{f_a} \left(J^{\mu}_{\text{QCD}} + J^{\mu}_{\text{EM}} + J^{\mu}_{\text{spin}} + \cdots \right)$ explains the smallness of the

neutron's electric dipole moment

How to think about axions dynamically?

axion dark matter ~ classical field

wave properties

 $a \propto \cos m_a t$

$$\frac{\text{frequency}}{\text{coherence time}} : m_a \sim \text{day}^{-1} - 10^{15} \text{ Hz}$$

$$\frac{\text{coherence time}}{m_a v_{\text{DM}}^2} \sim 1 \text{ ns} - 10^3 \text{ yrs}$$

Extending the mass range for EM-coupled axions	Confirming $the QCD$ axion	Clarifying the spin coupling
I. Heterodyne (low-mass) B+dielectric (high-mass)	II. Polarization Haloscope	III. EM signals Spin-Forces

Based on work with R. D'Agnolo, S. Ellis, C. Nantista, J. Neilson, P. Schuster, S. Tantawi, N. Toro, K. Zhou arXiv:1912.11048, arXiv:1912.11056, arXiv:2007.15656 and with T. Trickle, arXiv:2305.05681

I. EM-coupled Axions

ideal detector is resonantly matched to signal frequency

signal power ~ $(\omega_0 + m_a) \cos(\omega_0 + m_a)t$

 $\mathscr{L} \sim g_{a\gamma\gamma} \, a \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$

Cavities limited to a narrow range

Photon-Coupling

 $\mathscr{L} \sim g_{a\gamma\gamma} \, a \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$

 $\mathscr{L} \sim g_{a\gamma\gamma} \, a \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$

How to explore smaller masses?

LC circuits (DMRadio)

S. Chaudhuri, P. Graham, K. Irwin, J. Mardon, S. Rajendran, Y. Zhao arXiv:2204.13781, arXiv:2203.11246

 $B\sim {\rm few} \times {\rm T}$, $\,Q\sim 10^6$

Heterodyne/Upconversion (SRF cavities)

A. Berlin, R. D'Agnolo, S. Ellis, C. Nantista, J. Neilson, P. Schuster, S. Tantawi, N. Toro, K. Zhou arXiv:1912.11048, arXiv:1912.11056, arXiv:2007.15656

Transfer power between two nearly-degenerate cavity modes $\Delta\omega\sim m_a\ll\omega\sim {\rm GHz}$

 $B \sim \text{few} \times 100 \text{ mT}$, $Q \sim \text{few} \times 10^{11}$

How to explore higher masses?

In vacuum, axions do not convert into photons in uniform B-fields of "infinite" extent (compared to the axion Compton wavelength).

momentum mismatch provided by detector

In vacuum, axions do not convert into photons in uniform B-fields of "infinite" extent (compared to the axion Compton wavelength).

Momentum mismatch is more difficult at higher axion masses (smaller wavelengths).

$breaking\ translational\ invariance\ on\ small\ scales$

<u>Resonant Cavity</u> (ADMX-EFR)

arXiv:2203.14923

combine signal from 18 smaller cavities 2-4 GHz $\sim 8\text{-}16~\mu\text{eV}$

<u>Dielectric/Plasma</u> (MADMAX, LAMPOST, ALPHA)

arXiv:1901.07401, arXiv:2110.01582, arXiv:1904.11872

 $MADMAX/LAMPPOST: dielectric \ stacks$

ALPHA: wire metamaterial

modify photon's dispersion relation

How to explore remaining gaps in coverage?

$In \hbox{-} Medium\ Excitations$

19

$In \hbox{-} Medium\ Excitations$

(with Tanner Trickle arXiv:2305.05681)

inclusive rate accounting for *all* in-medium excitations (photon, phonon, electronic, ...)

Same materials/sensors are actively being pursued for sub-GeV dark matter scattering.

$In \hbox{-} Medium\ Excitations$

GaAs, Al₂O₃, SiO₂ optical phonons

 ${\rm Si}^{*},\ ZrTe_{5}$ "novel" electronic excitations

Ge, Si "standard" electronic excitations

 $g_{a\gamma\gamma} \propto (R_{\rm DC}/M_{\rm T} t_{\rm int})^{1/4}$

Based on work with K. Zhou (many slides also adapted from K. Zhou) arXiv:2209.12901

II. QCD-coupled Axions

Andreas Pargner, PhD Thesis

Photon-coupling (model-dependent)

<u>Cavities across the globe</u>

Cavity haloscopes are rapidly growing in maturity, exploring this mass-range with the photon-coupling.

But the defining coupling is to QCD, which gives rise to nuclear effects, such as oscillating nucleon/atomic EDMs.

But the defining coupling is to QCD, which gives rise to nuclear effects, such as oscillating nucleon/atomic EDMs.

How to explore the defining coupling in this mass-range? How do we confirm that a signal in cavity haloscopes is the QCD axion?

Oscillating Electric Dipole

 $\Delta \theta(t) \sim a/f_a \sim 10^{-18} \cos m_a t$

 $\Delta \theta(t) \sim a/f_a \sim 10^{-18} \cos m_a t$

 $\frac{\text{Polarization Haloscope: polarized nuclear material inside cavity}}{(\text{no B-field needed, in principle})}$

with Kevin Zhou arXiv:2209.12901

estimated $\langle S_z \rangle$ (e fm ³ θ_a)	4.3	1.0	1.2
estimated $ d_A $ $(10^{-3} e \text{ fm } \theta_a)$	1.2	0.25	0.3
natural abundance	19%	52%	15%
metal price $(\$/ton)$	$300\mathrm{k}$	$30\mathrm{k}$	$30\mathrm{k}$

Only way to confirm that putative signal is actually the QCD axion in the most motivated mass-range

III. Spin-coupled Axions

The Usual Story

 $(\mu B)_{\rm eff} \sim g_{aff} \, \nabla a$

The literature is full of discrepancies regarding other possible effects. What is the final word regarding physical signals?

 $L \sim \int d^3 \mathbf{x} \ g_{aff} \ \partial_\mu a \ \bar{f} \gamma^\mu \gamma^5 f$

$$L \sim \int d^3 \mathbf{x} \ g_{aff} \ \partial_\mu a \ \bar{f} \gamma^\mu \gamma^5 f$$

$$\int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f = 0} \sim (0, \boldsymbol{\sigma}) \quad \xrightarrow{\text{boost}} \quad \int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f \neq 0} \sim (\boldsymbol{v}_f \cdot \boldsymbol{\sigma} \, , \, \boldsymbol{\sigma})$$

$$L \sim \int d^3 \mathbf{x} \ g_{aff} \ \partial_\mu a \ \bar{f} \gamma^\mu \gamma^5 f$$

$$\int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f = 0} \sim (0, \boldsymbol{\sigma}) \quad \xrightarrow{\text{boost}} \quad \int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f \neq 0} \sim (\boldsymbol{v}_f \cdot \boldsymbol{\sigma} \, , \, \boldsymbol{\sigma})$$

 $L \sim g_{aff} \dot{a} \boldsymbol{\sigma} \cdot \boldsymbol{v}_f + g_{aff} \nabla a \cdot \boldsymbol{\sigma}$

$$L \sim \int d^3 \mathbf{x} \ g_{aff} \ \partial_\mu a \ \bar{f} \gamma^\mu \gamma^5 f$$

$$\int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f = 0} \sim (0, \boldsymbol{\sigma}) \xrightarrow{\text{boost}} \int d^3 \mathbf{x} \, \bar{f} \gamma^{\mu} \gamma^5 f \Big|_{v_f \neq 0} \sim (\boldsymbol{v}_f \cdot \boldsymbol{\sigma} \,, \, \boldsymbol{\sigma})$$

"axion-wind"

$$L \sim g_{aff} \dot{a} \boldsymbol{\sigma} \cdot \boldsymbol{v}_f + \overbrace{g_{aff} \nabla a \cdot \boldsymbol{\sigma}}$$
 the usual *effective* spin-coupled *B*-field

$$L \sim \int d^3 \mathbf{x} \ g_{aff} \ \partial_\mu a \ \bar{f} \gamma^\mu \gamma^5 f$$

Everything stems from these effects expressed in different frames.

$$\boldsymbol{A}_{\mathrm{eff}} \sim g_{aff} \, \dot{a} \, \boldsymbol{\sigma} \implies \boldsymbol{E}_{\mathrm{eff}} \sim g_{aff} \, \frac{d}{dt} (\dot{a} \, \boldsymbol{\sigma})$$

All signals scale as \ddot{a} or $\dot{a}\,\dot{\sigma}\sim\dot{a}\,\mu\,\sigma\times B$

(corrects or invalidates some previously-claimed signals) (more interesting at higher masses)

 $E_{\rm eff}$ can do work, in the form of generating EM currents in polarized material or accelerating blocks of polarized material

(place polarized material in EM detectors)

 $\sim LAMPOST$ for spin-coupled axions

dielectric stacks of polarized material with single-photon readout

• Magnetic stacks for the wind coupling (photon readout of spin-waves)

- Magnetic stacks for the wind coupling (photon readout of spin-waves)
- Absorption rate for the wind coupling ~ Im[-1/ μ] (magnetic energy loss function)

- Magnetic stacks for the wind coupling (photon readout of spin-waves)
- Absorption rate for the wind coupling ~ $\text{Im}[-1/\mu]$ (magnetic energy loss function)
- Mechanical forces on spin-polarized sensors
- **No** EDMs proportional to the field value
- No leading order electronic energy shifts in normal materials

Outlook

Outlook

The Motivated Opportunist

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts." - Sherlock Holmes Important to explore wide range of masses and couplings.

There are large regions of axion parameter space that require new ideas.

"It is more important to have beauty in the equations of physics than to have them agree with experiments." - *Paul Dirac*

+ theory priors

Back Up Slides

<u>signal EM field</u> $\sim \cos(\omega_0 + m_a)t$

ideal detector is resonantly matched to signal frequency

signal power $\sim (\omega_0 + m_a) \cos(\omega_0 + m_a)t$

LC circuit (DMRadio @ SLAC)

arXiv:2204.13781, arXiv:2203.11246

 $B \sim \text{few} \times \text{T}$, $Q \sim 10^6$

$$\omega_{\rm LC} \sim \frac{1}{\sqrt{LC}} \sim m_a \ll \frac{1}{\rm length}$$

$$\omega_{\rm LC} \sim m_a \implies \text{difficult to probe } m_a \lesssim 10 \text{ kHz} \sim 10^{-10} \text{ eV}$$

signal power $\propto \frac{\text{detector size}}{\text{axion Compton wavelength}} \ll 1$

axion mass is resonantly matched to frequency *splitting* signal power $\sim (\omega_0 + m_a) \cos (\omega_0 + m_a)t$

Heterodyne/Upconversion (SRF cavities @ Fermilab/SLAC)

arXiv:1912.11048, arXiv:1912.11056, arXiv:2007.15656

A. Berlin, R. D'Agnolo, S. Ellis, C. Nantista, J. Neilson, P. Schuster, S. Tantawi, N. Toro, K. Zhou

 $m_a \sim \omega_{\rm sig} - \omega_{\rm pump} \ll \omega_{\rm pump} \implies$ small mechanical deformations to tune for small masses

signal power \propto detector size \times mode frequency ~ 1

Larger Q means a longer time to resonantly drive power into a resonant detector

SRF cavities are the most efficient engineered oscillators, $Q > 10^{11}$.

Why superconducting RF cavities?

 most efficient engineered oscillators Q ~ 10¹¹
 long coherence for quantum computation
 large oscillating fields (0.2 T, ~GHz)
 precisely manufactured and operated (nm-precision)

4. already used for new physics searches (experimentalists)

"Frequency Conversion" between two $\sim \rm GHz\ cavity\ modes$

loud driven mode

"Frequency Conversion" between two ~ GHz cavity modes

1. Prepare the cavity with a large amount of power at mode ω_0 .

2. Axion dark matter resonantly transfers a small amount of power to mode ω_1 .

3. Scan over frequency-splittings (axion masses) by slightly deforming the cavity.

loud driven mode

"Frequency Conversion" between two ~ GHz cavity modes

1. Prepare the cavity with a large amount of power at mode ω_0 .

2. Axion dark matter resonantly transfers a small amount of power to mode ω_1 .

3. Scan over frequency-splittings (axion masses) by slightly deforming the cavity.

"Frequency Conversion" between two ~ GHz cavity modes

1. Prepare the cavity with a large amount of power at mode ω_0 .

- 2. Axion dark matter resonantly transfers a small amount of power to mode ω_1 .
- 3. Scan over frequency-splittings (axion masses) by slightly deforming the cavity.

"Frequency Conversion" between two ~ GHz cavity modes

1. Prepare the cavity with a large amount of power at mode ω_0 .

2. Axion dark matter resonantly transfers a small amount of power to mode ω_1 .

3. Scan over frequency-splittings (axion masses) by slightly deforming the cavity.

"Frequency Conversion" between two ~ GHz cavity modes

- 1. Prepare the cavity with a large amount of power at mode ω_0 .
- 2. Axion dark matter resonantly transfers a small amount of power to mode ω_1 .
- 3. Scan over frequency-splittings (axion masses) by slightly deforming the cavity.

Heterodyne Detection of Axion Dark Matter

 $\frac{\text{signal is always read out at} \sim \text{GHz}}{\text{Directly benefit from } Q \sim 10^{11}}$ signal power enhanced by $\text{GHz}/m_a \gg 1$

ſ /0

Axion Dark Matter

arXiv:1912.11048, arXiv:1912.11056, arXiv:2007.15656, arXiv:2207.11346